Horizontal structure of the temperature field of the upper layer in the northwest part of the Tropical Atlantic

Horizontal structure of the temperature field of the upper layer in the northwest part of the... By using the data of observations over the spatial variability of the temperature field in the northwest part of the Tropical Atlantic carried out in a test range 400 × 400 miles in size with a horizontal resolution Δx ≈ 2 km and a vertical resolution Δz ≈ 0.5 m, we recorded quasiperiodic fluctuations of temperature with semidiurnal period in the subsurface layer. The internal baroclinic waves with the same period generated, most likely, on the northeast shelf of South America and propagating to the northeast are detected in the seasonal thermocline. The vertical fine structure of the temperature field has different intensities in the test range. The maximum levels of dispersions of temperature fluctuations are recorded on the boundary of the North Equatorial Countercurrent and the North Equatorial Current. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Horizontal structure of the temperature field of the upper layer in the northwest part of the Tropical Atlantic

Loading next page...
 
/lp/springer_journal/horizontal-structure-of-the-temperature-field-of-the-upper-layer-in-y5UOfwj0Th
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-006-0038-5
Publisher site
See Article on Publisher Site

Abstract

By using the data of observations over the spatial variability of the temperature field in the northwest part of the Tropical Atlantic carried out in a test range 400 × 400 miles in size with a horizontal resolution Δx ≈ 2 km and a vertical resolution Δz ≈ 0.5 m, we recorded quasiperiodic fluctuations of temperature with semidiurnal period in the subsurface layer. The internal baroclinic waves with the same period generated, most likely, on the northeast shelf of South America and propagating to the northeast are detected in the seasonal thermocline. The vertical fine structure of the temperature field has different intensities in the test range. The maximum levels of dispersions of temperature fluctuations are recorded on the boundary of the North Equatorial Countercurrent and the North Equatorial Current.

Journal

Physical OceanographySpringer Journals

Published: Feb 23, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off