Hop constraint based admission and fairness control in IP-over-WDM networks

Hop constraint based admission and fairness control in IP-over-WDM networks From both user and operator perspectives, fairness is an important aspect in IP-over-WDM networks where Label Switched Paths (LSPs) are dynamically groomed over optical networks. The setup of LSPs with long distances experiences a higher blocking probability due to both lightpath establishment unfairness in the optical layer and link cascading effect in the IP/MPLS layer. A simple LSP connection admission and fairness control mechanism is proposed in this article. This control mechanism is based on hop constraint, in which an LSP is accepted with a pre-assigned probability according to its distance and the hops of its route. Through suppressing connection of short-distance LSPs that overuse bandwidth to facilitate the setup of LSPs with long distances, this proposal achieves fine distance fairness performance with a slight overall blocking probability increment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Hop constraint based admission and fairness control in IP-over-WDM networks

Loading next page...
 
/lp/springer_journal/hop-constraint-based-admission-and-fairness-control-in-ip-over-wdm-JBm89HB6WJ
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0082-1
Publisher site
See Article on Publisher Site

Abstract

From both user and operator perspectives, fairness is an important aspect in IP-over-WDM networks where Label Switched Paths (LSPs) are dynamically groomed over optical networks. The setup of LSPs with long distances experiences a higher blocking probability due to both lightpath establishment unfairness in the optical layer and link cascading effect in the IP/MPLS layer. A simple LSP connection admission and fairness control mechanism is proposed in this article. This control mechanism is based on hop constraint, in which an LSP is accepted with a pre-assigned probability according to its distance and the hops of its route. Through suppressing connection of short-distance LSPs that overuse bandwidth to facilitate the setup of LSPs with long distances, this proposal achieves fine distance fairness performance with a slight overall blocking probability increment.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off