Holographic particle image velocimetry measurements in a four-valve combustion engine

Holographic particle image velocimetry measurements in a four-valve combustion engine This is a feasibility study to show that the nonreacting three-dimensional flow in the cylinder of a four-valve internal combustion engine at 160° after top dead center (atdc) at 1,500 rpm can be accurately measured by holographic particle image velocimetry. The results evidence the quality of holographic PIV measurements in engine flows and the capability of the holographic method to instantaneously capture the complete three-dimensional flow field in a large area of the highly intricate cylinder flow. The resolved measurement volume has a diameter of about 60 mm and a height of 80 mm with a vector spacing of 0.75 mm per vector. To validate the measurements, the flow structure as well as the turbulent kinetic energy of the flow field is compared with planar two-component/two-dimensional (2C/2D-PIV) measurements performed in the same engine (Dannemann et al., in Exp Fluids 2010). Furthermore, the spatial propagation of the flow field as well as the vortical structures is visualized by 3D streamlines and λ 2-contours. The current results confirm the existence of several large-scale flow structures, such as a counter-rotating ring-vortex pair below the inlet valve and the tumble vortex. The latter possesses a U-shaped propagation of the vortex core. The analysis of the two-point correlation shows the integral length scale to be in the range 2.5–6.1 mm, which is in agreement with literature data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Holographic particle image velocimetry measurements in a four-valve combustion engine

Loading next page...
 
/lp/springer_journal/holographic-particle-image-velocimetry-measurements-in-a-four-valve-l3M0sAVsv0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1634-z
Publisher site
See Article on Publisher Site

Abstract

This is a feasibility study to show that the nonreacting three-dimensional flow in the cylinder of a four-valve internal combustion engine at 160° after top dead center (atdc) at 1,500 rpm can be accurately measured by holographic particle image velocimetry. The results evidence the quality of holographic PIV measurements in engine flows and the capability of the holographic method to instantaneously capture the complete three-dimensional flow field in a large area of the highly intricate cylinder flow. The resolved measurement volume has a diameter of about 60 mm and a height of 80 mm with a vector spacing of 0.75 mm per vector. To validate the measurements, the flow structure as well as the turbulent kinetic energy of the flow field is compared with planar two-component/two-dimensional (2C/2D-PIV) measurements performed in the same engine (Dannemann et al., in Exp Fluids 2010). Furthermore, the spatial propagation of the flow field as well as the vortical structures is visualized by 3D streamlines and λ 2-contours. The current results confirm the existence of several large-scale flow structures, such as a counter-rotating ring-vortex pair below the inlet valve and the tumble vortex. The latter possesses a U-shaped propagation of the vortex core. The analysis of the two-point correlation shows the integral length scale to be in the range 2.5–6.1 mm, which is in agreement with literature data.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 4, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off