HMM/SVM segmentation and labelling of Arabic speech for speech recognition applications

HMM/SVM segmentation and labelling of Arabic speech for speech recognition applications Building a large vocabulary continuous speech recognition (LVCSR) system requires a lot of hours of segmented and labelled speech data. Arabic language, as many other low-resourced languages, lacks such data, but the use of automatic segmentation proved to be a good alternative to make these resources available. In this paper, we suggest the combination of hidden Markov models (HMMs) and support vector machines (SVMs) to segment and to label the speech waveform into phoneme units. HMMs generate the sequence of phonemes and their frontiers; the SVM refines the frontiers and corrects the labels. The obtained segmented and labelled units may serve as a training set for speech recognition applications. The HMM/SVM segmentation algorithm is assessed using both the hit rate and the word error rate (WER); the resulting scores were compared to those provided by the manual segmentation and to those provided by the well-known embedded learning algorithm. The results show that the speech recognizer built upon the HMM/SVM segmentation outperforms in terms of WER the one built upon the embedded learning segmentation of about 0.05%, even in noisy background. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

HMM/SVM segmentation and labelling of Arabic speech for speech recognition applications

Loading next page...
 
/lp/springer_journal/hmm-svm-segmentation-and-labelling-of-arabic-speech-for-speech-9w3oRetexs
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9427-z
Publisher site
See Article on Publisher Site

Abstract

Building a large vocabulary continuous speech recognition (LVCSR) system requires a lot of hours of segmented and labelled speech data. Arabic language, as many other low-resourced languages, lacks such data, but the use of automatic segmentation proved to be a good alternative to make these resources available. In this paper, we suggest the combination of hidden Markov models (HMMs) and support vector machines (SVMs) to segment and to label the speech waveform into phoneme units. HMMs generate the sequence of phonemes and their frontiers; the SVM refines the frontiers and corrects the labels. The obtained segmented and labelled units may serve as a training set for speech recognition applications. The HMM/SVM segmentation algorithm is assessed using both the hit rate and the word error rate (WER); the resulting scores were compared to those provided by the manual segmentation and to those provided by the well-known embedded learning algorithm. The results show that the speech recognizer built upon the HMM/SVM segmentation outperforms in terms of WER the one built upon the embedded learning segmentation of about 0.05%, even in noisy background.

Journal

International Journal of Speech TechnologySpringer Journals

Published: Jun 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off