HIV DNA integration during cell-to-cell transmission of infection: evidence for partially integrated DNA structures in acutely infected cells

HIV DNA integration during cell-to-cell transmission of infection: evidence for partially... A one-step cell-to-cell transmission model of human immunodeficiency virus (HIV) infection was used to study viral DNA integration in the early phase of viral replication. Co-culturing H3B cells as virus donors with CD4+ Hut78 recipient cells in a ratio of 1:4 produced a synchronous, one-step viral infection with de novo synthesis of unintegrated HIV DNA within 4 h p.i., which subsequently integrates in the host genomic DNA to form provirus. To study the kinetics of viral DNA integration, cellular chromosomal DNA was isolated at different times after co-culturing and extensive electrophoresis was used to remove residual unintegrated viral DNA. Removal of contaminating, unintegrated viral DNA in the purified chromosomal DNA fraction was confirmed by various experiments. When purified chromosomal DNA (free of contaminating unintegrated viral DNA) – from the mix of acutely infected cells – was digested with restriction enzymes KpnI, BamHI or PstI and analysed by Southern blot hybridization, integration of viral DNA into chromosomal DNA was first observed at 8 h p.i. and was essentially complete by 72 h p.i. In addition, evidence was found for a relatively stable, partially integrated HIV DNA structure within the chromosomal DNA, that was first detectable at 8 h p.i. and did not become fully integrated until 72 hours post infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

HIV DNA integration during cell-to-cell transmission of infection: evidence for partially integrated DNA structures in acutely infected cells

Loading next page...
 
/lp/springer_journal/hiv-dna-integration-during-cell-to-cell-transmission-of-infection-efmAo71Ant
Publisher
Springer Journals
Copyright
Copyright © 2001 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050170045
Publisher site
See Article on Publisher Site

Abstract

A one-step cell-to-cell transmission model of human immunodeficiency virus (HIV) infection was used to study viral DNA integration in the early phase of viral replication. Co-culturing H3B cells as virus donors with CD4+ Hut78 recipient cells in a ratio of 1:4 produced a synchronous, one-step viral infection with de novo synthesis of unintegrated HIV DNA within 4 h p.i., which subsequently integrates in the host genomic DNA to form provirus. To study the kinetics of viral DNA integration, cellular chromosomal DNA was isolated at different times after co-culturing and extensive electrophoresis was used to remove residual unintegrated viral DNA. Removal of contaminating, unintegrated viral DNA in the purified chromosomal DNA fraction was confirmed by various experiments. When purified chromosomal DNA (free of contaminating unintegrated viral DNA) – from the mix of acutely infected cells – was digested with restriction enzymes KpnI, BamHI or PstI and analysed by Southern blot hybridization, integration of viral DNA into chromosomal DNA was first observed at 8 h p.i. and was essentially complete by 72 h p.i. In addition, evidence was found for a relatively stable, partially integrated HIV DNA structure within the chromosomal DNA, that was first detectable at 8 h p.i. and did not become fully integrated until 72 hours post infection.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off