His-Asp phosphorelay signaling: a communication avenue between plants and their environment

His-Asp phosphorelay signaling: a communication avenue between plants and their environment His-Asp phosphorelay systems have been recently discovered in plants and have emerged as some of the most important signaling systems. The phosphorelay systems in plants include components with sensor (His-protein kinase) domains, His-containing phosphotransfer (HPt) domains, and receiver (response regulator) domains. Recent studies implicate phosphorelay systems in sensing and propagating signals from a wide variety of external and/or internal stimuli such as ethylene, cytokinin, and osmolarity. In maize and Arabidopsis, some response regulators are up-regulated by both cytokinins and nitrate. These findings imply that the His-Asp phosphorelay may operate in an inorganic nitrogen-signaling pathway mediated by cytokinin in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

His-Asp phosphorelay signaling: a communication avenue between plants and their environment

Loading next page...
 
/lp/springer_journal/his-asp-phosphorelay-signaling-a-communication-avenue-between-plants-G2HkBdgHzJ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006334926388
Publisher site
See Article on Publisher Site

Abstract

His-Asp phosphorelay systems have been recently discovered in plants and have emerged as some of the most important signaling systems. The phosphorelay systems in plants include components with sensor (His-protein kinase) domains, His-containing phosphotransfer (HPt) domains, and receiver (response regulator) domains. Recent studies implicate phosphorelay systems in sensing and propagating signals from a wide variety of external and/or internal stimuli such as ethylene, cytokinin, and osmolarity. In maize and Arabidopsis, some response regulators are up-regulated by both cytokinins and nitrate. These findings imply that the His-Asp phosphorelay may operate in an inorganic nitrogen-signaling pathway mediated by cytokinin in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off