Highly toxic seeds of the Japanese star anise Illicium anisatum are dispersed by a seed-caching bird and a rodent

Highly toxic seeds of the Japanese star anise Illicium anisatum are dispersed by a seed-caching... Many field studies on plant seed dispersal teach us that we cannot judge the effective dispersal mode of plants by examining only the morphologies of the fruits and seeds. In the present study, we explored the seed dispersal process of an evergreen tree, the Japanese star anise Illicium anisatum, which is highly toxic, containing neurotoxins in both the fruits and seeds. The fruits exhibit ballochory, a mode of seed dispersal characterized by explosive fruit dehiscence, and the extreme toxicity apparently seems to deter fruit and seed consumption by animals. However, we found that the dispersal distance afforded by this mode was very short (≤ 6 m). In the field, we confirmed that a passerine species, the varied tit Poecile varius, was the only consumer of the seed in foliage, and the bird actively transported seeds or fruits to either cache or consume them. Seeds setting on the forest understory were removed by the small Japanese field mouse Apodemus argenteus, and were also dispersed by this animal. Analysis of seedling spatial distribution revealed that seedlings were highly aggregated near standing trees or fallen logs, suggesting that caching facilitated seed dispersal. This study warns that plant toxicity and the ecological function thereof should not be evaluated based only on limited knowledge of the effects on humans and mammals. Our results pose further questions on the evolution of toxin tolerance in seed-caching animals and on the mutualism between toxic plants and animals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Research Springer Journals

Highly toxic seeds of the Japanese star anise Illicium anisatum are dispersed by a seed-caching bird and a rodent

Loading next page...
 
/lp/springer_journal/highly-toxic-seeds-of-the-japanese-star-anise-illicium-anisatum-are-dlNwXMwtXo
Publisher
Springer Japan
Copyright
Copyright © 2018 by The Ecological Society of Japan
Subject
Life Sciences; Ecology; Plant Sciences; Zoology; Evolutionary Biology; Behavioral Sciences; Forestry
ISSN
0912-3814
eISSN
1440-1703
D.O.I.
10.1007/s11284-018-1564-6
Publisher site
See Article on Publisher Site

Abstract

Many field studies on plant seed dispersal teach us that we cannot judge the effective dispersal mode of plants by examining only the morphologies of the fruits and seeds. In the present study, we explored the seed dispersal process of an evergreen tree, the Japanese star anise Illicium anisatum, which is highly toxic, containing neurotoxins in both the fruits and seeds. The fruits exhibit ballochory, a mode of seed dispersal characterized by explosive fruit dehiscence, and the extreme toxicity apparently seems to deter fruit and seed consumption by animals. However, we found that the dispersal distance afforded by this mode was very short (≤ 6 m). In the field, we confirmed that a passerine species, the varied tit Poecile varius, was the only consumer of the seed in foliage, and the bird actively transported seeds or fruits to either cache or consume them. Seeds setting on the forest understory were removed by the small Japanese field mouse Apodemus argenteus, and were also dispersed by this animal. Analysis of seedling spatial distribution revealed that seedlings were highly aggregated near standing trees or fallen logs, suggesting that caching facilitated seed dispersal. This study warns that plant toxicity and the ecological function thereof should not be evaluated based only on limited knowledge of the effects on humans and mammals. Our results pose further questions on the evolution of toxin tolerance in seed-caching animals and on the mutualism between toxic plants and animals.

Journal

Ecological ResearchSpringer Journals

Published: Jan 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off