Highly Sensitive Enzymatic MWCNTs-Based Biosensors for Detection of Abiraterone in Human Serum

Highly Sensitive Enzymatic MWCNTs-Based Biosensors for Detection of Abiraterone in Human Serum A highly sensitive enzymatic biosensor is successfully experimented for detection of abiraterone in human serum with significance in personalized medicine and point-of-care chemotherapy of patients with metastatic prostate cancer. The dynamic range and limit of the detection of the proposed biosensor coincide with the therapeutic range of abiraterone in circulatory system of patients (below 1 μM). An optimized label-free electrochemical biosensor was exploited in order to improve the performance of biosensor to detect low concentrations of abiraterone in human serum. Electroactive surface area has been increased by 4314 mm2 by multiwalled carbon nanotubes (MWCNTs) nanostructuring with respect to bare electrode to enhance the sensitivity. CYP3A4 protein was immobilized on MWCNTs as probe biomolecule. Electrochemical cyclic voltammetries demonstrated an inhibition effect on the CYP3A4, clearly observed as a diminished electrocatalytic activity of the enzyme. Dose-response behavior of biosensor in interaction with abiraterone in human serum samples is demonstrated that shows a dynamic range between zero and 1 μM and a detection limit of 230 nM. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png BioNanoScience Springer Journals

Highly Sensitive Enzymatic MWCNTs-Based Biosensors for Detection of Abiraterone in Human Serum

Loading next page...
 
/lp/springer_journal/highly-sensitive-enzymatic-mwcnts-based-biosensors-for-detection-of-kV4ZxX06W8
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Circuits and Systems; Biological and Medical Physics, Biophysics; Nanotechnology; Biomaterials
ISSN
2191-1630
eISSN
2191-1649
D.O.I.
10.1007/s12668-017-0393-3
Publisher site
See Article on Publisher Site

Abstract

A highly sensitive enzymatic biosensor is successfully experimented for detection of abiraterone in human serum with significance in personalized medicine and point-of-care chemotherapy of patients with metastatic prostate cancer. The dynamic range and limit of the detection of the proposed biosensor coincide with the therapeutic range of abiraterone in circulatory system of patients (below 1 μM). An optimized label-free electrochemical biosensor was exploited in order to improve the performance of biosensor to detect low concentrations of abiraterone in human serum. Electroactive surface area has been increased by 4314 mm2 by multiwalled carbon nanotubes (MWCNTs) nanostructuring with respect to bare electrode to enhance the sensitivity. CYP3A4 protein was immobilized on MWCNTs as probe biomolecule. Electrochemical cyclic voltammetries demonstrated an inhibition effect on the CYP3A4, clearly observed as a diminished electrocatalytic activity of the enzyme. Dose-response behavior of biosensor in interaction with abiraterone in human serum samples is demonstrated that shows a dynamic range between zero and 1 μM and a detection limit of 230 nM.

Journal

BioNanoScienceSpringer Journals

Published: Feb 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off