Highly selective adsorption of organic dyes onto tungsten trioxide nanowires

Highly selective adsorption of organic dyes onto tungsten trioxide nanowires The strong selective adsorption property of monoclinic tungsten trioxide nanowires (WO3NWs) towards organic dyes was reported in this paper. The effects of pH, initial concentration and types of dyes were systematically investigated. Particularly, methylene blue (MB) was more inclined to be adsorbed in acid solution and a maximum uptake capacity of 148.6 mg g−1 was achieved. 88 % of MB can be rapidly adsorbed within 70 min. The kinetics, isotherms and thermodynamics for the adsorption of MB and methyl orange (MO) were well described. The kinetic adsorption on WO3NWs followed a pseudo second-order model (R 2 = 0.998) and the Langmuir isotherm (R 2 = 0.992) agreed very well with the experimental data. The negative values of ΔG 0 at various temperatures (−5.656, −5.792, and −5.946 kJ mol−1) and ΔH 0 (−1.343 kJ mol−1) implied that the adsorption reaction was spontaneous and exothermic. Specific surface area (864.153 m2 g−1) and surface acidic groups of WO3NWs enabled excellent adsorption performance. A highly selective adsorption mechanism involving the electrostatic interaction between hydroxyls on the WO3NWs' surfaces and different dye molecules was proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Highly selective adsorption of organic dyes onto tungsten trioxide nanowires

Loading next page...
 
/lp/springer_journal/highly-selective-adsorption-of-organic-dyes-onto-tungsten-trioxide-kSC5ZczH7t
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2392-8
Publisher site
See Article on Publisher Site

Abstract

The strong selective adsorption property of monoclinic tungsten trioxide nanowires (WO3NWs) towards organic dyes was reported in this paper. The effects of pH, initial concentration and types of dyes were systematically investigated. Particularly, methylene blue (MB) was more inclined to be adsorbed in acid solution and a maximum uptake capacity of 148.6 mg g−1 was achieved. 88 % of MB can be rapidly adsorbed within 70 min. The kinetics, isotherms and thermodynamics for the adsorption of MB and methyl orange (MO) were well described. The kinetic adsorption on WO3NWs followed a pseudo second-order model (R 2 = 0.998) and the Langmuir isotherm (R 2 = 0.992) agreed very well with the experimental data. The negative values of ΔG 0 at various temperatures (−5.656, −5.792, and −5.946 kJ mol−1) and ΔH 0 (−1.343 kJ mol−1) implied that the adsorption reaction was spontaneous and exothermic. Specific surface area (864.153 m2 g−1) and surface acidic groups of WO3NWs enabled excellent adsorption performance. A highly selective adsorption mechanism involving the electrostatic interaction between hydroxyls on the WO3NWs' surfaces and different dye molecules was proposed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 22, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off