Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow

Highly efficient transfer and stable expression of two genes upon lentivirus transduction of... The efficiency of human bone marrow (BM) mesenchymal stem cell (MSC) transduction with a bicistronic lentivirus vector was estimated, and the stability of transgene expression in genetically modified MSCs was determined. First-passage BM MSCs were capable of efficient transduction with the bicistronic lentivirus vector. The transduction efficiency depended on the multiplicity of infection (MOI), being 64.64 ± 6.5 and 88.6 ± 2.9% at MOI 10 and 20, respectively. The lentivirus transduction efficiency proved independent on the number of passages of a BM MSC culture, and expression of the egfp and dsRed1 transgenes in genetically modified MSCs remained stable for one month of culturing. A comparison showed that the level of egfp and dsRed1 transgene expression was preserved upon hepatogenic differentiation in vitro. The results provide a basis for further development of multigenic modification of human BM MSCs for research and/or therapeutic purposes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow

Loading next page...
 
/lp/springer_journal/highly-efficient-transfer-and-stable-expression-of-two-genes-upon-WslMR1XPnp
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Animal Genetics and Genomics; Microbial Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795412030039
Publisher site
See Article on Publisher Site

Abstract

The efficiency of human bone marrow (BM) mesenchymal stem cell (MSC) transduction with a bicistronic lentivirus vector was estimated, and the stability of transgene expression in genetically modified MSCs was determined. First-passage BM MSCs were capable of efficient transduction with the bicistronic lentivirus vector. The transduction efficiency depended on the multiplicity of infection (MOI), being 64.64 ± 6.5 and 88.6 ± 2.9% at MOI 10 and 20, respectively. The lentivirus transduction efficiency proved independent on the number of passages of a BM MSC culture, and expression of the egfp and dsRed1 transgenes in genetically modified MSCs remained stable for one month of culturing. A comparison showed that the level of egfp and dsRed1 transgene expression was preserved upon hepatogenic differentiation in vitro. The results provide a basis for further development of multigenic modification of human BM MSCs for research and/or therapeutic purposes.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off