Highly efficient biosorptive removal of lead from industrial effluent

Highly efficient biosorptive removal of lead from industrial effluent This study has been focused on the efficient removal of Pb (II) from contaminated waters by biosorption using plant derived material. Accordingly an indigenous shrub, Tinospora cordifolia has been identified as the most suitable biosorbent. The plant biomass was subjected to optimization of various parameters such as the pH, equilibrium time, dosage, concentration, temperature and the applicable adsorption models. The optimum pH identified was 4.0 with a contact time of 60 min at room temperature (27 ± 2 °C). The experimental data fitted well to adsorption isotherms and the uptake capacity of Pb (II) was found to be 20.83 and 63.77 mg/g in batch mode and column mode, respectively. The high correlation factors obtained for Langmuir and Freundlich models indicated that both models were obeyed by the system. Kinetic study for adsorption of Pb (II) follow only pseudo second order rate of reaction. The accumulation of lead in biomass was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The FTIR analysis indicated the involvement of hydroxyl (−OH), alkenes (=CH) and carbonyl group (C = O) chelates in metal binding. The SEM and EDX analysis showed the structural changes and the filling of voids in the biomass thus, it indicated the metal-binding mechanism. In elution studies, the 0.1 M Na2CO3 was found to be the best with about 71% elution of the adsorbed metal. The biomass was then used for the removal of Pb (II) in synthetic and real wastewater samples from a lead-acid battery industry. It is also noteworthy that even at a very high concentration of 450 mg/L, the biomass was showing about 92% removal. The result is to establish the efficacy of T. cordifolia as a very good bioadsorbent for the Pb (II) removal from contaminated water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Highly efficient biosorptive removal of lead from industrial effluent

Loading next page...
 
/lp/springer_journal/highly-efficient-biosorptive-removal-of-lead-from-industrial-effluent-D4ExvIdt95
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9413-7
Publisher site
See Article on Publisher Site

Abstract

This study has been focused on the efficient removal of Pb (II) from contaminated waters by biosorption using plant derived material. Accordingly an indigenous shrub, Tinospora cordifolia has been identified as the most suitable biosorbent. The plant biomass was subjected to optimization of various parameters such as the pH, equilibrium time, dosage, concentration, temperature and the applicable adsorption models. The optimum pH identified was 4.0 with a contact time of 60 min at room temperature (27 ± 2 °C). The experimental data fitted well to adsorption isotherms and the uptake capacity of Pb (II) was found to be 20.83 and 63.77 mg/g in batch mode and column mode, respectively. The high correlation factors obtained for Langmuir and Freundlich models indicated that both models were obeyed by the system. Kinetic study for adsorption of Pb (II) follow only pseudo second order rate of reaction. The accumulation of lead in biomass was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The FTIR analysis indicated the involvement of hydroxyl (−OH), alkenes (=CH) and carbonyl group (C = O) chelates in metal binding. The SEM and EDX analysis showed the structural changes and the filling of voids in the biomass thus, it indicated the metal-binding mechanism. In elution studies, the 0.1 M Na2CO3 was found to be the best with about 71% elution of the adsorbed metal. The biomass was then used for the removal of Pb (II) in synthetic and real wastewater samples from a lead-acid battery industry. It is also noteworthy that even at a very high concentration of 450 mg/L, the biomass was showing about 92% removal. The result is to establish the efficacy of T. cordifolia as a very good bioadsorbent for the Pb (II) removal from contaminated water.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off