Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis

Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains:... Sequences encoding proteins with homology to protein tyrosine phosphatases have been identified in Arabidopsis, soybean and pea. Each contains a predicted catalytic domain containing sequence motifs characteristic of tyrosine-specific protein phosphatases (PTPs) which play an important role in signal transduction in other eukaryotes and are distinct from dual- specificity, cdc25 or low-molecular-weight protein tyrosine phosphatases. Their identity as PTPs was confirmed by characterising the soybean PTP expressed as a recombinant His-tagged fusion protein. The enzyme had phosphatase activity towards p- nitrophenolphosphate (pNPP) and phosphotyrosine, but did not hydrolyse phosphoserine or phosphothreonine at a measureable rate. Phosphotyrosine containing peptides also served as substrates, with Km values in the micromolar range. Activity was abolished by inhibitors specific for tyrosine phosphatases (vanadate, dephostatin) but was unaffected by inhibitors of serine/threonine protein phosphatases (fluoride, cantharidin, metal-chelating agents). Gel filtration chromatography showed that the recombinant enzyme was a monomer. The Arabidopsis PTP sequence was isolated both as a genomic clone and as a partial EST, whereas the pea and soybean sequences were isolated as cDNAs. Southern analysis suggested a single gene in Arabidopsis and a small gene family in pea and soybean. In pea, PTP transcripts were present in embryos, and decreased in level with development; transcripts were also detectable in other tissues. The plant PTPs all contain a similar N-terminal domain which shows no similarity to any known protein sequence. This domain may be involved in PTP functions unique to plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis

Loading next page...
 
/lp/springer_journal/higher-plant-tyrosine-specific-protein-phosphatases-ptps-contain-novel-0ffchh3Aw5
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006170902271
Publisher site
See Article on Publisher Site

Abstract

Sequences encoding proteins with homology to protein tyrosine phosphatases have been identified in Arabidopsis, soybean and pea. Each contains a predicted catalytic domain containing sequence motifs characteristic of tyrosine-specific protein phosphatases (PTPs) which play an important role in signal transduction in other eukaryotes and are distinct from dual- specificity, cdc25 or low-molecular-weight protein tyrosine phosphatases. Their identity as PTPs was confirmed by characterising the soybean PTP expressed as a recombinant His-tagged fusion protein. The enzyme had phosphatase activity towards p- nitrophenolphosphate (pNPP) and phosphotyrosine, but did not hydrolyse phosphoserine or phosphothreonine at a measureable rate. Phosphotyrosine containing peptides also served as substrates, with Km values in the micromolar range. Activity was abolished by inhibitors specific for tyrosine phosphatases (vanadate, dephostatin) but was unaffected by inhibitors of serine/threonine protein phosphatases (fluoride, cantharidin, metal-chelating agents). Gel filtration chromatography showed that the recombinant enzyme was a monomer. The Arabidopsis PTP sequence was isolated both as a genomic clone and as a partial EST, whereas the pea and soybean sequences were isolated as cDNAs. Southern analysis suggested a single gene in Arabidopsis and a small gene family in pea and soybean. In pea, PTP transcripts were present in embryos, and decreased in level with development; transcripts were also detectable in other tissues. The plant PTPs all contain a similar N-terminal domain which shows no similarity to any known protein sequence. This domain may be involved in PTP functions unique to plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off