Higher derivations and commutativity in lattice-ordered rings

Higher derivations and commutativity in lattice-ordered rings In 1978 I. N. Herstein proved that a prime ring $$R$$ R of characteristic not two with nonzero derivation $$d$$ d satisfying $$d(x)d(y)=d(y)d(x)$$ d ( x ) d ( y ) = d ( y ) d ( x ) for all $$x,y\in R$$ x , y ∈ R is commutative, and in 1995 Bell and Daif showed that $$d(xy)=d(yx)$$ d ( x y ) = d ( y x ) implies commutativity. We extend the Bell–Daif theorem to lattice-ordered prime rings with a positive derivation satisfying the property on a one-sided $$L$$ L -ideal and interpret these conditions for higher derivations in prime $$d$$ d -rings and in semiprime $$f$$ f -rings. Our key tool is that every positive derivation nilpotent on a one-sided $$L$$ L -ideal of a semiprime $$\ell $$ ℓ -ring is zero on that ideal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Higher derivations and commutativity in lattice-ordered rings

Loading next page...
Springer Basel
Copyright © 2013 by Springer Basel
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


  • Commutativity of rings with derivations
    Andima, S; Pajoohesh, H

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial