Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation

Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body... Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, γ-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera® (γ-Zein ER-accumulating domain) is the N-terminal proline-rich domain of γ-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera® domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera® domain. We demonstrated that Zera®-F1-V protein accumulation was at least 3× higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera® technology to induce protein body formation in non-seed tissues. Zera® expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera® technology to substantially increase the accumulation of value-added proteins in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation

Loading next page...
 
/lp/springer_journal/higher-accumulation-of-f1-v-fusion-recombinant-protein-in-plants-after-ip3Ws0X1VS
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9552-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial