High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm (Phoenix dactylifera, L.)

High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm... Date palm provides both staple food and gardening for the Middle East and North African countries for thousands of years. Its fruits have diversified significantly, such as nutritional content, size, length, weight color, and ripping process. Dates palm represent an excellent model system for the study of fruit development and diversity of fruit-bearing palm species that produce the most versatile fruit types as compared to other plant families. Using Roche/454 GS FLX instrument, we acquired 7.6 million sequence tags from seven fruiting stages (F1–F7). Over 99% of the raw reads are assembled, and the numbers of isotigs (equivalent to transcription units or unigenes) range from 30,684 to 40,378 during different fruiting stages. We annotated isotigs using BLASTX and BLASTN, and mapped 74% of the isotigs to known functional sequences or genes. Based on gene ontology categorization and pathway analysis, we have identified 10 core cell division genes, 18 ripening related genes, and 7 starch metabolic enzymes, which are involved as nutrition storage and sugar/starch metabolisms. We noticed that many metabolic pathways vary significantly during fruit development, and carbohydrate metabolism (especially sugar synthesis) is particularly prominent during fruit ripening. Transcriptomics study on various fruiting stages of date palm shows complicated metabolic activities during fruit development, ripening, synthesis and accumulation of starch enzymes and other related sugars. Most Genes are highly expressed in early stages of development, while late developmental stages are critical for fruit ripening including most of the metabolism associated ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm (Phoenix dactylifera, L.)

Loading next page...
 
/lp/springer_journal/high-throughput-sequencing-based-gene-profiling-on-multi-staged-fruit-4OZjYXTKpb
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by The Author(s)
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9890-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial