High Temperature Wear Behaviors of TiAl–TiB2 Composites

High Temperature Wear Behaviors of TiAl–TiB2 Composites In this article, the dry-sliding tribological behaviors of TiAl-based composites reinforced with 20 and 40 vol% in situ synthesized TiB2 produced by a hot-press sintering process were investigated from room temperature (RT) to 800 °C. The results show that the high-temperature wear resistance of the TiAl alloy is improved by adding the TiB2 particles under all the testing temperatures, and the more the TiB2 reinforcement, the better the wear resistance is. This improvement is more significant at 600 °C and above, especially for the composite with 40 vol% TiB2, whose wear rate is 4–10 times lower than TiAl at 600 and 800 °C. Accordingly, the wear mechanisms transfer from abrasion wear at low and moderate temperature (RT, 200 and 400 °C) to oxidation wear at high temperature (600 and 800 °C). In addition to the brittle-to-ductile transition of the materials and oxide layer formation, the phase transition of Al2O3 and TiO2 may be partly responsible for the promising wear resistance at high temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

High Temperature Wear Behaviors of TiAl–TiB2 Composites

Loading next page...
 
/lp/springer_journal/high-temperature-wear-behaviors-of-tial-tib2-composites-nFpKmImQ31
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
ISSN
1023-8883
eISSN
1573-2711
D.O.I.
10.1007/s11249-017-0924-7
Publisher site
See Article on Publisher Site

Abstract

In this article, the dry-sliding tribological behaviors of TiAl-based composites reinforced with 20 and 40 vol% in situ synthesized TiB2 produced by a hot-press sintering process were investigated from room temperature (RT) to 800 °C. The results show that the high-temperature wear resistance of the TiAl alloy is improved by adding the TiB2 particles under all the testing temperatures, and the more the TiB2 reinforcement, the better the wear resistance is. This improvement is more significant at 600 °C and above, especially for the composite with 40 vol% TiB2, whose wear rate is 4–10 times lower than TiAl at 600 and 800 °C. Accordingly, the wear mechanisms transfer from abrasion wear at low and moderate temperature (RT, 200 and 400 °C) to oxidation wear at high temperature (600 and 800 °C). In addition to the brittle-to-ductile transition of the materials and oxide layer formation, the phase transition of Al2O3 and TiO2 may be partly responsible for the promising wear resistance at high temperatures.

Journal

Tribology LettersSpringer Journals

Published: Sep 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off