High Temperature Stability of Hydrated Ion Pairs Na+Cl–(H2O) N under Conditions of a Flat Nanopore

High Temperature Stability of Hydrated Ion Pairs Na+Cl–(H2O) N under Conditions of a Flat... The high-temperature stability of hydrated ion pairs under conditions of a nanoscopic flat pore with hydrophobic structureless walls is studied by computer simulations. The limited space of the nanopore stimulates dissociation of the contact ion pair (CIP) with its transition to the state of the solvent-separated ion pair (SSIP); moreover, the ion pair demonstrates a high degree of stability on heating. The inverse temperature effect where the heating renders a moderate consolidating effect on the state of a hydrated contact ion pair is observed: when heated to the electrolyte boiling point, the free energy barrier that separates the CIP and SSIP states shifts by 2 molecules towards the larger hydration shells. On the pressure scale, the boundary between CIP and SSIP states shifts at the same rate as the saturating pressure with the increase in the temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Electrochemistry Springer Journals

High Temperature Stability of Hydrated Ion Pairs Na+Cl–(H2O) N under Conditions of a Flat Nanopore

Loading next page...
 
/lp/springer_journal/high-temperature-stability-of-hydrated-ion-pairs-na-cl-h2o-n-under-yE2hrmIV4M
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Chemistry; Electrochemistry; Physical Chemistry
ISSN
1023-1935
eISSN
1608-3342
D.O.I.
10.1134/S1023193518020064
Publisher site
See Article on Publisher Site

Abstract

The high-temperature stability of hydrated ion pairs under conditions of a nanoscopic flat pore with hydrophobic structureless walls is studied by computer simulations. The limited space of the nanopore stimulates dissociation of the contact ion pair (CIP) with its transition to the state of the solvent-separated ion pair (SSIP); moreover, the ion pair demonstrates a high degree of stability on heating. The inverse temperature effect where the heating renders a moderate consolidating effect on the state of a hydrated contact ion pair is observed: when heated to the electrolyte boiling point, the free energy barrier that separates the CIP and SSIP states shifts by 2 molecules towards the larger hydration shells. On the pressure scale, the boundary between CIP and SSIP states shifts at the same rate as the saturating pressure with the increase in the temperature.

Journal

Russian Journal of ElectrochemistrySpringer Journals

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial