High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds

High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human... The objective of the present study is the detailed analysis of the unsteady vortex dynamics downstream of the human glottis during phonation at typical fundamental frequencies of the male voice of about 120 Hz. A hydraulic respiratory mock circuit has been built, including a factor of three up-scaled realistic dynamic model of the vocal folds. Time-resolving flow measurements were carried out downstream of the glottis by means of high-speed particle image velocimetry (PIV). The function of the human glottis is reproduced by two counter-rotating cams, each of which is covered with a stretched silicone membrane. The three-dimensional (3-D) geometry of the cams is designed such that the rotation leads to a realistic time-varying motion and profile of the glottis and waveform of the glottal cycle. Using high-speed PIV, the velocity field is captured with high spatial and temporal resolution to investigate the unsteady vortex dynamics of the cyclic jet-like flow in the vocal tract. The results help us to understand the vorticity interaction within the pulsating jet and, consequently, the generated sound in a human voice. In addition, changing the 3-D contours of the cams enables us to investigate basic pathological differences of the glottis function and the resulting alterations of the velocity and vorticity field in the vocal tract. The results are presented for typical physiological flow conditions in the human glottis. The frequencies of periodic vortex structures generated downstream of the glottis are fivefold higher than the fundamental frequency of the vocal folds’ oscillation. The highest vorticity fluctuations have a phase shift of 35% relative to the opening of the glottis. Finally, the flow field in the vocal tract is identified to be highly three-dimensional. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds

Loading next page...
 
/lp/springer_journal/high-speed-piv-measurements-of-the-flow-downstream-of-a-dynamic-DDXVAvA0dS
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-1015-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial