Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

High speed PIV applied to aerodynamic noise investigation

High speed PIV applied to aerodynamic noise investigation In this paper, we study the acoustic emissions of the flow over a rectangular cavity. Especially, we investigate the possibility of estimating the acoustic emission by analysis of PIV data. Such a possibility is appealing, since it would allow to directly relate the flow behavior to the aerodynamic noise production. This will help considerably in understanding the noise production mechanisms and to investigate the possible ways of reducing it. In this study, we consider an open cavity with an aspect ratio between its length and depth of 2 at a Reynolds number of 2.4 × 104 and 3.0 × 104 based on the cavity length. The study is carried out combining high speed two-dimensional PIV, wall pressure measurements and sound measurements. The pressure field is computed from the PIV data. Curle’s analogy is applied to obtain the acoustic pressure field. The pressure measurements on the wall of the cavity and the sound measurements are then used to validate the results obtained from PIV and check the range of validity of this approach. This study demonstrated that the technique is able to quantify the acoustic emissions from the cavity and is promising especially for capturing the tonal components on the sound emission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

High speed PIV applied to aerodynamic noise investigation

Loading next page...
1
 
/lp/springer_journal/high-speed-piv-applied-to-aerodynamic-noise-investigation-a0CHe9PLZT

References (29)

Publisher
Springer Journals
Copyright
Copyright © 2010 by The Author(s)
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-010-0935-8
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the acoustic emissions of the flow over a rectangular cavity. Especially, we investigate the possibility of estimating the acoustic emission by analysis of PIV data. Such a possibility is appealing, since it would allow to directly relate the flow behavior to the aerodynamic noise production. This will help considerably in understanding the noise production mechanisms and to investigate the possible ways of reducing it. In this study, we consider an open cavity with an aspect ratio between its length and depth of 2 at a Reynolds number of 2.4 × 104 and 3.0 × 104 based on the cavity length. The study is carried out combining high speed two-dimensional PIV, wall pressure measurements and sound measurements. The pressure field is computed from the PIV data. Curle’s analogy is applied to obtain the acoustic pressure field. The pressure measurements on the wall of the cavity and the sound measurements are then used to validate the results obtained from PIV and check the range of validity of this approach. This study demonstrated that the technique is able to quantify the acoustic emissions from the cavity and is promising especially for capturing the tonal components on the sound emission.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 20, 2010

There are no references for this article.