High-resolution turbulent scalar field measurements in an optically accessible internal combustion engine

High-resolution turbulent scalar field measurements in an optically accessible internal... High-resolution planar laser-induced fluorescence (PLIF) measurements were performed in an optically accessible internal combustion engine to investigate the evolution of the turbulent mixing process during the intake and compression strokes. The PLIF measurements were used to analyze the important turbulent length scales, scalar energy and dissipation spectra, and mean scalar gradients. The fluorescence images had sufficient spatial resolution and integrity to resolve all of the fine-scale features of the flow, allowing for direct determination of the Batchelor length scale. The integral and Taylor scales were also determined from two-point spatial correlations of the fluctuating scalar field using an appropriately defined mean scalar value. The general morphology of the scalar field and the measured integral, Taylor and Batchelor length scales were found to be largely independent of engine speed and intake pressure, but increased as the engine cycle progressed through the intake and compression strokes. The measured Batchelor scales ranged from 22 to 54 μm; the integral scales ranged from 1.8 to 3.5 mm; and the Taylor microscales ranged from 0.6 to 1.2 mm. The Taylor and integral scale values were comparable to values reported in the literature from in-cylinder velocity measurements. The mean scalar gradient, a measure of the fine-scale mixing rate, monotonically decreased as the engine cycle advanced. High-resolution measurements of this type are important in the development and validation of future engine combustion models used in computer simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

High-resolution turbulent scalar field measurements in an optically accessible internal combustion engine

Loading next page...
 
/lp/springer_journal/high-resolution-turbulent-scalar-field-measurements-in-an-optically-opQraQ11s0
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1178-z
Publisher site
See Article on Publisher Site

Abstract

High-resolution planar laser-induced fluorescence (PLIF) measurements were performed in an optically accessible internal combustion engine to investigate the evolution of the turbulent mixing process during the intake and compression strokes. The PLIF measurements were used to analyze the important turbulent length scales, scalar energy and dissipation spectra, and mean scalar gradients. The fluorescence images had sufficient spatial resolution and integrity to resolve all of the fine-scale features of the flow, allowing for direct determination of the Batchelor length scale. The integral and Taylor scales were also determined from two-point spatial correlations of the fluctuating scalar field using an appropriately defined mean scalar value. The general morphology of the scalar field and the measured integral, Taylor and Batchelor length scales were found to be largely independent of engine speed and intake pressure, but increased as the engine cycle progressed through the intake and compression strokes. The measured Batchelor scales ranged from 22 to 54 μm; the integral scales ranged from 1.8 to 3.5 mm; and the Taylor microscales ranged from 0.6 to 1.2 mm. The Taylor and integral scale values were comparable to values reported in the literature from in-cylinder velocity measurements. The mean scalar gradient, a measure of the fine-scale mixing rate, monotonically decreased as the engine cycle advanced. High-resolution measurements of this type are important in the development and validation of future engine combustion models used in computer simulations.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 30, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off