Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

High-resolution PIV measurements of a transitional shock wave–boundary layer interaction

High-resolution PIV measurements of a transitional shock wave–boundary layer interaction This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m−1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96 $$\delta_{i,0}^*$$ δ i , 0 ∗ . The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80–90 $$\delta_{i,0}^*$$ δ i , 0 ∗ downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43 $$\delta_{i,0}^*$$ δ i , 0 ∗ ), and transition is found to be accelerated over the separation bubble. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

High-resolution PIV measurements of a transitional shock wave–boundary layer interaction

Experiments in Fluids , Volume 56 (6) – May 22, 2015

Loading next page...
 
/lp/springer_journal/high-resolution-piv-measurements-of-a-transitional-shock-wave-boundary-ykzbPpuHUe

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2015 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-015-1977-8
Publisher site
See Article on Publisher Site

Abstract

This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m−1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96 $$\delta_{i,0}^*$$ δ i , 0 ∗ . The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80–90 $$\delta_{i,0}^*$$ δ i , 0 ∗ downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43 $$\delta_{i,0}^*$$ δ i , 0 ∗ ), and transition is found to be accelerated over the separation bubble.

Journal

Experiments in FluidsSpringer Journals

Published: May 22, 2015

There are no references for this article.