High-resolution flying-PIV with optical fiber laser delivery

High-resolution flying-PIV with optical fiber laser delivery Implementation of non-intrusive optical measurement techniques, such as particle image velocimetry (PIV), in harsh environments requires specialized techniques for introducing controlled laser sheets to the region of interest. Large earthquake shake tables are a particularly challenging environment. Lasers must be mounted away from the table, and the laser sheet has to be delivered precisely and stably to the measurement station. Here, high-power multi-mode step-index fiber optics enable introduction of light from an Nd:YLF pulsed laser to a remote test section. Such lasers are suitable for coupling to optical fibers, which presents a portable, flexible, and safe manner to deliver a PIV light sheet. Best practices for their implementation are reviewed. Particular attention is focused on obtaining a collimated beam of acceptable quality at the output of the fiber. To achieve high spatial resolution, the PIV camera is directly mounted on the moving shake table with care to minimize its vibrations. A special arrangement of PIV planes is deployed for precise in-situ PIV alignment and to monitor and account for residual structure vibrations and beam wandering. The design of the instruments is detailed. Here, an experimental facility for the study of nuclear fuel bundle response to seismic forcing near prototypical conditions is instrumented. Only through integration of a high-resolution flying-PIV system can velocity fields be acquired. Data indicate that in the presence of a mean axial flow, a secondary oscillatory flow develops as the bundle oscillates. Instantaneous, phase-averaged, and fluctuating velocity fields illustrate this phenomenon. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

High-resolution flying-PIV with optical fiber laser delivery

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial