High-Level Expression, Refolding and Probing the Natural Fold of the Human Voltage-Dependent Anion Channel Isoforms I and II

High-Level Expression, Refolding and Probing the Natural Fold of the Human Voltage-Dependent... The voltage-dependent anion channel (VDAC) is the major protein found in the outer membrane of mitochondria. The channel is responsible for the exchange of ATP/ADP and the translocation of ions and other small metabolites over the membrane. In order to obtain large amounts of pure and suitably folded human VDAC for functional and structural studies, the genes of the human isoforms I and II (HVDAC1 and HVDAC2) were cloned in Escherichia coli. High-level expression led to inclusion body formation. Both proteins could be refolded in vitro by adding denatured protein to a solution of zwitterionic or nonionic detergents. A highly efficient and fast protocol for refolding was developed that yielded more than 50 mg of pure human VDACs per liter of cell culture. The native and functional state of the refolded porins was probed by Fourier transform infrared spectroscopy to determine the secondary structure composition and by electrophysiological measurements, demonstrating the pore-forming activity of HVDAC1. Furthermore, binding of HVDAC1 to immobilized ATP was demonstrated. Limited proteolysis of HVDAC1 protein embedded in detergent micelles in combination with matrix-assisted laser desorption ionization mass spectrometric analysis was applied to identify micelle-exposed regions of the protein and to develop an improved topology model. Our analysis strongly suggests a 16-stranded, antiparallel β-barrel with one large and seven short loops and turns. Initial crystallization trials of the protein yielded crystals diffracting to 8 Å resolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

High-Level Expression, Refolding and Probing the Natural Fold of the Human Voltage-Dependent Anion Channel Isoforms I and II

Loading next page...
 
/lp/springer_journal/high-level-expression-refolding-and-probing-the-natural-fold-of-the-mMUkOEtEaE
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9038-8
Publisher site
See Article on Publisher Site

Abstract

The voltage-dependent anion channel (VDAC) is the major protein found in the outer membrane of mitochondria. The channel is responsible for the exchange of ATP/ADP and the translocation of ions and other small metabolites over the membrane. In order to obtain large amounts of pure and suitably folded human VDAC for functional and structural studies, the genes of the human isoforms I and II (HVDAC1 and HVDAC2) were cloned in Escherichia coli. High-level expression led to inclusion body formation. Both proteins could be refolded in vitro by adding denatured protein to a solution of zwitterionic or nonionic detergents. A highly efficient and fast protocol for refolding was developed that yielded more than 50 mg of pure human VDACs per liter of cell culture. The native and functional state of the refolded porins was probed by Fourier transform infrared spectroscopy to determine the secondary structure composition and by electrophysiological measurements, demonstrating the pore-forming activity of HVDAC1. Furthermore, binding of HVDAC1 to immobilized ATP was demonstrated. Limited proteolysis of HVDAC1 protein embedded in detergent micelles in combination with matrix-assisted laser desorption ionization mass spectrometric analysis was applied to identify micelle-exposed regions of the protein and to develop an improved topology model. Our analysis strongly suggests a 16-stranded, antiparallel β-barrel with one large and seven short loops and turns. Initial crystallization trials of the protein yielded crystals diffracting to 8 Å resolution.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off