High-efficiency process for production of sulfur from metallurgical sulfur dioxide gases

High-efficiency process for production of sulfur from metallurgical sulfur dioxide gases Process in which sulfur is produced from a gas containing 25–55% SO2 was studied in order to evaluate the real efficiency of the catalytic post-reduction of sulfur dioxide in a pilot unit with gas flow rate of up to 1.2 nm3 h–1 at the following temperatures (°C): thermal stage 850–1100, catalytic conversion 350–570, and Claus reactor 219–279. It was found that the conversion at 400–550°C and space velocity of 1600 h–1 on AOK-78-57 promoted aluminum oxide catalyst provides full processing of organosulfur compounds (CS2 and COS). The temperature dependence of the conversion/generation of hydrogen sulfide on AOK-78-57 catalyst corresponds to the equilibrium model. It was experimentally confirmed that the homogeneous reduction of sulfur dioxide gas with methane at T ≈ 1100°C, with catalytic post-reduction at 400–550°C and subsequent Claus-conversion of the reduced gas at 230–260°C, provide a sufficiently deep (by 92–95%) general processing of sulfur dioxide gas to sulfur. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

High-efficiency process for production of sulfur from metallurgical sulfur dioxide gases

Loading next page...
 
/lp/springer_journal/high-efficiency-process-for-production-of-sulfur-from-metallurgical-09KXF2TZlz
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S107042721601002X
Publisher site
See Article on Publisher Site

Abstract

Process in which sulfur is produced from a gas containing 25–55% SO2 was studied in order to evaluate the real efficiency of the catalytic post-reduction of sulfur dioxide in a pilot unit with gas flow rate of up to 1.2 nm3 h–1 at the following temperatures (°C): thermal stage 850–1100, catalytic conversion 350–570, and Claus reactor 219–279. It was found that the conversion at 400–550°C and space velocity of 1600 h–1 on AOK-78-57 promoted aluminum oxide catalyst provides full processing of organosulfur compounds (CS2 and COS). The temperature dependence of the conversion/generation of hydrogen sulfide on AOK-78-57 catalyst corresponds to the equilibrium model. It was experimentally confirmed that the homogeneous reduction of sulfur dioxide gas with methane at T ≈ 1100°C, with catalytic post-reduction at 400–550°C and subsequent Claus-conversion of the reduced gas at 230–260°C, provide a sufficiently deep (by 92–95%) general processing of sulfur dioxide gas to sulfur.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: May 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off