High-efficiency multipartite entanglement purification of electron-spin states with charge detection

High-efficiency multipartite entanglement purification of electron-spin states with charge detection We present a high-efficiency multipartite entanglement purification protocol (MEPP) for electron-spin systems in a Greenberger–Horne–Zeilinger state based on their spins and their charges. Our MEPP contains two parts. The first part is our normal MEPP with which the parties can obtain a high-fidelity N-electron ensemble directly, similar to the MEPP with controlled-not gates. The second one is our recycling MEPP with entanglement link from N′-electron subsystems (2 < N′ < N). It is interesting to show that the N′-electron subsystems can be obtained efficiently by measuring the electrons with potential bit-flip errors from the instances which are useless and are just discarded in all existing conventional MEPPs. Combining these two parts, our MEPP has the advantage of the efficiency higher than other MEPPs largely for electron-spin systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

High-efficiency multipartite entanglement purification of electron-spin states with charge detection

Loading next page...
 
/lp/springer_journal/high-efficiency-multipartite-entanglement-purification-of-electron-FCsTVD130S
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0427-2
Publisher site
See Article on Publisher Site

Abstract

We present a high-efficiency multipartite entanglement purification protocol (MEPP) for electron-spin systems in a Greenberger–Horne–Zeilinger state based on their spins and their charges. Our MEPP contains two parts. The first part is our normal MEPP with which the parties can obtain a high-fidelity N-electron ensemble directly, similar to the MEPP with controlled-not gates. The second one is our recycling MEPP with entanglement link from N′-electron subsystems (2 < N′ < N). It is interesting to show that the N′-electron subsystems can be obtained efficiently by measuring the electrons with potential bit-flip errors from the instances which are useless and are just discarded in all existing conventional MEPPs. Combining these two parts, our MEPP has the advantage of the efficiency higher than other MEPPs largely for electron-spin systems.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 22, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off