High-dimensional deterministic multiparty quantum secret sharing without unitary operations

High-dimensional deterministic multiparty quantum secret sharing without unitary operations A deterministic multiparty quantum secret sharing scheme is put forward, in which Bell states in high-dimensional Hilbert space are used. Only by preforming High-dimensional Bell measurements, all agents can recover the secret according to the dealer’s announcement when collaborating with each other. It shows that unitary operation for encoding deterministic secret is unnecessary in quantum communication. The security of the transmission of the high-dimensional Bell states can be ensured by randomly using one of the two mutually unbiased bases for eavesdropping checking, and thus by which the proposed quantum secret sharing scheme is secure against usual attacks. In addition, the proposed scheme has three advantages: generality, high resource capacity and high security. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

High-dimensional deterministic multiparty quantum secret sharing without unitary operations

Loading next page...
 
/lp/springer_journal/high-dimensional-deterministic-multiparty-quantum-secret-sharing-7K9ijyAHWJ
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0333-z
Publisher site
See Article on Publisher Site

Abstract

A deterministic multiparty quantum secret sharing scheme is put forward, in which Bell states in high-dimensional Hilbert space are used. Only by preforming High-dimensional Bell measurements, all agents can recover the secret according to the dealer’s announcement when collaborating with each other. It shows that unitary operation for encoding deterministic secret is unnecessary in quantum communication. The security of the transmission of the high-dimensional Bell states can be ensured by randomly using one of the two mutually unbiased bases for eavesdropping checking, and thus by which the proposed quantum secret sharing scheme is secure against usual attacks. In addition, the proposed scheme has three advantages: generality, high resource capacity and high security.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 19, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off