High-density genetic map construction and QTL mapping for fiber strength on Chr24 across multiple environments in a CCRI70 recombinant inbred lines population

High-density genetic map construction and QTL mapping for fiber strength on Chr24 across multiple... Upland cotton is an important economic crop that produces high-quality fiber for the textile industry. With the development of next-generation sequencing technology and improvements in human living standards, it has become possible to improve the fiber quality and yield of cotton with high-throughput molecular markers. Upland cotton 901-001 is an excellent, high-quality, non-transgenic cultivar, while the sGK156 strain shows high resistance to verticillium wilt. The phenotype of F1 plants, certified in 2008 as national variety CCRI70, shows positive transgressive characteristics such as high quality, high yield, and resistance to verticillium wilt. We developed a population of 250 recombination inbred lines from a cross between 901-001 and sGK156. The fiber strength trait of plants from nine environments was collected, and a genetic linkage map of Chr24 comprising 168 SNP marker loci covering a genetic distance of 107.46 cM and with an average distance of 0.64 cM was generated. QTLs were identified across the nine environments using the composite interval mapping method. A total of eight QTLs for FS were identified on Chr24, three of which were stably expressed in at least five environments. Some candidate genes located in qFS-c24-2 and qFS-c24-4 were functionally annotated as potentially playing important roles in fiber development, with homologous genes reported in Arabidopsis thaliana. These results suggest that QTLs identified in the present study could contribute to improving FS and may be applicable for marker-assisted selection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Euphytica Springer Journals

High-density genetic map construction and QTL mapping for fiber strength on Chr24 across multiple environments in a CCRI70 recombinant inbred lines population

Loading next page...
 
/lp/springer_journal/high-density-genetic-map-construction-and-qtl-mapping-for-fiber-aP830I6u9K
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Pathology; Plant Physiology; Biotechnology
ISSN
0014-2336
eISSN
1573-5060
D.O.I.
10.1007/s10681-018-2177-4
Publisher site
See Article on Publisher Site

Abstract

Upland cotton is an important economic crop that produces high-quality fiber for the textile industry. With the development of next-generation sequencing technology and improvements in human living standards, it has become possible to improve the fiber quality and yield of cotton with high-throughput molecular markers. Upland cotton 901-001 is an excellent, high-quality, non-transgenic cultivar, while the sGK156 strain shows high resistance to verticillium wilt. The phenotype of F1 plants, certified in 2008 as national variety CCRI70, shows positive transgressive characteristics such as high quality, high yield, and resistance to verticillium wilt. We developed a population of 250 recombination inbred lines from a cross between 901-001 and sGK156. The fiber strength trait of plants from nine environments was collected, and a genetic linkage map of Chr24 comprising 168 SNP marker loci covering a genetic distance of 107.46 cM and with an average distance of 0.64 cM was generated. QTLs were identified across the nine environments using the composite interval mapping method. A total of eight QTLs for FS were identified on Chr24, three of which were stably expressed in at least five environments. Some candidate genes located in qFS-c24-2 and qFS-c24-4 were functionally annotated as potentially playing important roles in fiber development, with homologous genes reported in Arabidopsis thaliana. These results suggest that QTLs identified in the present study could contribute to improving FS and may be applicable for marker-assisted selection.

Journal

EuphyticaSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off