Access the full text.
Sign up today, get DeepDyve free for 14 days.
The hierarchical CuCo2O4/C microspheres have been fabricated via a two-step method involving hydrothermal and calcination processes. SEM, TEM, HRTEM, XRD and XPS were used to characterize the morphology, structure, and composition of the materials. The CuCo2O4/C microspheres have a hierarchically flower-like structure composed of nanoparticles-stacked nanosheets. Moreover, the as-prepared double-metal oxide hierarchical microsphere composites exhibit greatly improved electrochemical performance than that of pure CuCo2O4, owing to the synergistic effect of CuCo2O4 and carbon spheres. The CuCo2O4/C 5:1 modified electrode exhibited high sensitivity of 707.71 μA mM−1cm−2 in a wide linear range from 5 to 8000 μM with detection limit of about 1.5 μM. The outstanding glucose sensing performance of CuCo2O4/C 5:1 demonstrated that this kind of spinel bimetallic oxides composites can be favorable candidates for the development of non-enzymatic sensor.
Journal of Materials Science – Springer Journals
Published: Jun 6, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.