Hierarchical clustering for OLAP: the CUBE File approach

Hierarchical clustering for OLAP: the CUBE File approach This paper deals with the problem of physical clustering of multidimensional data that are organized in hierarchies on disk in a hierarchy-preserving manner. This is called hierarchical clustering . A typical case, where hierarchical clustering is necessary for reducing I/Os during query evaluation, is the most detailed data of an OLAP cube. The presence of hierarchies in the multidimensional space results in an enormous search space for this problem. We propose a representation of the data space that results in a chunk-tree representation of the cube. The model is adaptive to the cube’s extensive sparseness and provides efficient access to subsets of data based on hierarchy value combinations. Based on this representation of the search space we formulate the problem as a chunk-to-bucket allocation problem, which is a packing problem as opposed to the linear ordering approach followed in the literature. We propose a metric to evaluate the quality of hierarchical clustering achieved (i.e., evaluate the solutions to the problem) and formulate the problem as an optimization problem. We prove its NP-Hardness and provide an effective solution based on a linear time greedy algorithm. The solution of this problem leads to the construction of the CUBE File data structure. We analyze in depth all steps of the construction and provide solutions for interesting sub-problems arising, such as the formation of bucket-regions, the storage of large data chunks and the caching of the upper nodes (root directory) in main memory. Finally, we provide an extensive experimental evaluation of the CUBE File’s adaptability to the data space sparseness as well as to an increasing number of data points. The main result is that the CUBE File is highly adaptive to even the most sparse data spaces and for realistic cases of data point cardinalities provides hierarchical clustering of high quality and significant space savings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Hierarchical clustering for OLAP: the CUBE File approach

Loading next page...
 
/lp/springer_journal/hierarchical-clustering-for-olap-the-cube-file-approach-9uFNNdwoYL
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0022-1
Publisher site
See Article on Publisher Site

Abstract

This paper deals with the problem of physical clustering of multidimensional data that are organized in hierarchies on disk in a hierarchy-preserving manner. This is called hierarchical clustering . A typical case, where hierarchical clustering is necessary for reducing I/Os during query evaluation, is the most detailed data of an OLAP cube. The presence of hierarchies in the multidimensional space results in an enormous search space for this problem. We propose a representation of the data space that results in a chunk-tree representation of the cube. The model is adaptive to the cube’s extensive sparseness and provides efficient access to subsets of data based on hierarchy value combinations. Based on this representation of the search space we formulate the problem as a chunk-to-bucket allocation problem, which is a packing problem as opposed to the linear ordering approach followed in the literature. We propose a metric to evaluate the quality of hierarchical clustering achieved (i.e., evaluate the solutions to the problem) and formulate the problem as an optimization problem. We prove its NP-Hardness and provide an effective solution based on a linear time greedy algorithm. The solution of this problem leads to the construction of the CUBE File data structure. We analyze in depth all steps of the construction and provide solutions for interesting sub-problems arising, such as the formation of bucket-regions, the storage of large data chunks and the caching of the upper nodes (root directory) in main memory. Finally, we provide an extensive experimental evaluation of the CUBE File’s adaptability to the data space sparseness as well as to an increasing number of data points. The main result is that the CUBE File is highly adaptive to even the most sparse data spaces and for realistic cases of data point cardinalities provides hierarchical clustering of high quality and significant space savings.

Journal

The VLDB JournalSpringer Journals

Published: Jul 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off