Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries

Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite... Lithium–sulfur battery has been considered as a promising electrochemical energy storage system based on its theoretical energy density. However, its practical application is hindered by poor conductivity of sulfur and the shuttle effect. Herein, a hierarchical three-dimensional nitrogen and phosphorous codoped graphene and carbon nanotubes with 70 wt% of sulfur content (N, P codoped G/CNTs-S70) composite was prepared using melamine phosphate as a single precursor of N and P. The simultaneous introduction of N and P creates high active sites on the G/CNTs backbones, restricts the detachments of sulfur from the host G/CNTs, and induces strong chemical adsorption of the dissolution of lithium polysulfides. The as-prepared N, P codoped G/CNTs-S70 composite delivers a high initial discharge capacity of 1550 mA h g−1 and retains a capacity of 735 mA h g−1 after 200 cycles at 0.5  C. This is a significant improvement in the rate capability and cycling stability compared with the un-doped G/CNTs-S70 cathode. This simple strategy with single precursor offers promising electrochemical properties for Li–S batteries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries

Loading next page...
 
/lp/springer_journal/hierarchical-3d-nitrogen-and-phosphorous-codoped-graphene-carbon-k000CyY0l6
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1678-1
Publisher site
See Article on Publisher Site

Abstract

Lithium–sulfur battery has been considered as a promising electrochemical energy storage system based on its theoretical energy density. However, its practical application is hindered by poor conductivity of sulfur and the shuttle effect. Herein, a hierarchical three-dimensional nitrogen and phosphorous codoped graphene and carbon nanotubes with 70 wt% of sulfur content (N, P codoped G/CNTs-S70) composite was prepared using melamine phosphate as a single precursor of N and P. The simultaneous introduction of N and P creates high active sites on the G/CNTs backbones, restricts the detachments of sulfur from the host G/CNTs, and induces strong chemical adsorption of the dissolution of lithium polysulfides. The as-prepared N, P codoped G/CNTs-S70 composite delivers a high initial discharge capacity of 1550 mA h g−1 and retains a capacity of 735 mA h g−1 after 200 cycles at 0.5  C. This is a significant improvement in the rate capability and cycling stability compared with the un-doped G/CNTs-S70 cathode. This simple strategy with single precursor offers promising electrochemical properties for Li–S batteries.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off