Heterosis associated gene expression in maize embryos 6days after fertilization exhibits additive, dominant and overdominant pattern

Heterosis associated gene expression in maize embryos 6days after fertilization exhibits... Heterosis is important for conventional plant breeding and is intensively used to increase the productivity of crop plants. Genetic processes shortly after fertilization might be of particular importance with respect to heterosis, because coordination of the diverse genomes establishes a basis for future performance of the sporophyte. Here we demonstrate a strong crossbreeding advantage of hybrid maize embryos as early as 6 days after fertilization in a modern maize hybrid and provide the first embryo specific analysis of associated gene expression pattern at this early stage of development. We identified differentially expressed genes between hybrid embryos and the parental genotypes by a combined approach of suppression subtractive hybridization and differential screening by microarray hybridizations. Association of heterosis in embryos with genes related to signal transduction and other regulatory processes was implied by the enrichment of these functional classes among the identified gene set. Quantitative RT-PCR analysis validated the expression pattern of 7 of 12 genes analysed and revealed predominantly additive, but also dominant and overdominant expression patterns in hybrid embryos. These patterns indicate that gene regulatory interactions among parental alleles act at this early developmental stage and the genes identified provide entry points for the exploration of gene regulatory networks associated with the specification of the phenomenon heterosis in the plant life cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Heterosis associated gene expression in maize embryos 6days after fertilization exhibits additive, dominant and overdominant pattern

Loading next page...
 
/lp/springer_journal/heterosis-associated-gene-expression-in-maize-embryos-6days-after-EI0ZRmrE4A
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9095-x
Publisher site
See Article on Publisher Site

Abstract

Heterosis is important for conventional plant breeding and is intensively used to increase the productivity of crop plants. Genetic processes shortly after fertilization might be of particular importance with respect to heterosis, because coordination of the diverse genomes establishes a basis for future performance of the sporophyte. Here we demonstrate a strong crossbreeding advantage of hybrid maize embryos as early as 6 days after fertilization in a modern maize hybrid and provide the first embryo specific analysis of associated gene expression pattern at this early stage of development. We identified differentially expressed genes between hybrid embryos and the parental genotypes by a combined approach of suppression subtractive hybridization and differential screening by microarray hybridizations. Association of heterosis in embryos with genes related to signal transduction and other regulatory processes was implied by the enrichment of these functional classes among the identified gene set. Quantitative RT-PCR analysis validated the expression pattern of 7 of 12 genes analysed and revealed predominantly additive, but also dominant and overdominant expression patterns in hybrid embryos. These patterns indicate that gene regulatory interactions among parental alleles act at this early developmental stage and the genes identified provide entry points for the exploration of gene regulatory networks associated with the specification of the phenomenon heterosis in the plant life cycle.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 3, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off