Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs

Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a... Despite the significant contributions of utilizing heterosis to crop productivity worldwide, the biological mechanisms of heterosis remained largely uncharacterized. In this study, we analyzed gene expression profiles of an elite rice hybrid and the parents at three stages of young panicle development, using a cDNA microarray consisting of 9198 expressed sequence tags (ESTs), with the objective to reveal patterns of gene expression that may be associated with heterosis in yield. A total of 8422 sequences showed hybridization signals in all three genotypes in at least one stage and 5771 sequences produced detectable signals in all slides. Significant differences in expression level were detected for 438 sequences among the three genotypes in at least one of the three stages, as determined by ANOVA validated with 100 permutations at P < 0.05. Significant mid-parent heterosis was detected for 141 sequences, which demonstrated the following features: a much larger number of sequences showed negative heterosis than ones showing positive heterosis; genes functioning in DNA replication and repair tended to show positive heterosis; genes functioning in carbohydrate metabolism, lipid metabolism, energy metabolism, translation, protein degradation, and cellular information processing showed negative heterosis; both positive and negative heterosis were observed for genes in amino acid metabolism, transcription, signal transduction, plant defense and transportation. The results are indicative of the biochemical and physiological activities taking place in the hybrid relative to the parents. Identification of genes showing expression polymorphisms among different genotypes and heterotic expression in the hybrid may provide new avenues for exploring the biological mechanisms underlying heterosis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial