Heterologous Expression of a Mammalian ABC Transporter in Plant and its Application to Phytoremediation

Heterologous Expression of a Mammalian ABC Transporter in Plant and its Application to... Mammalian ATP-binding cassette (ABC) transporters involved in the multidrug-resistance of cancer cells can efflux cytotoxic compounds that show a wide variety of chemical structures and biological activities. Human multidrug resistance-associated protein (hMRP1) is one of the most intensively studied ABC transporters and many substrates have been identified, including both organic and inorganic compounds. In an attempt at novel ‘transport engineering’ using hMRP1 as a molecular pump, we established transgenic tobacco plants that showed clear resistance to cadmium and daunorubicin, although they were not resistant to etoposide, another known substrate of hMRP1. When expressed in tobacco cells, hMRP1 protein was localized at vacuolar membrane, while members of the MRP family are localized at plasma membrane in mammalian cells to reduce the cellular accumulation of various drugs. Thus, the hMRP1-expressing tobacco cells were able to take up these substrates across the tonoplast and sequestrate them in the vacuolar matrix. These results suggest that it may be possible to use the transgenic tobacco in phytoremediation, where a single transformation with an ABC transporter with broad substrate specificity should be effective for extracting various environmental pollutants including both organic and inorganic compounds, and accumulate them in the plant body. This should be advantageous for the remediation of a complex polluted environment, which is commonly found in the real world. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Heterologous Expression of a Mammalian ABC Transporter in Plant and its Application to Phytoremediation

Loading next page...
 
/lp/springer_journal/heterologous-expression-of-a-mammalian-abc-transporter-in-plant-and-nGrGGtkcfE
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0024-9
Publisher site
See Article on Publisher Site

Abstract

Mammalian ATP-binding cassette (ABC) transporters involved in the multidrug-resistance of cancer cells can efflux cytotoxic compounds that show a wide variety of chemical structures and biological activities. Human multidrug resistance-associated protein (hMRP1) is one of the most intensively studied ABC transporters and many substrates have been identified, including both organic and inorganic compounds. In an attempt at novel ‘transport engineering’ using hMRP1 as a molecular pump, we established transgenic tobacco plants that showed clear resistance to cadmium and daunorubicin, although they were not resistant to etoposide, another known substrate of hMRP1. When expressed in tobacco cells, hMRP1 protein was localized at vacuolar membrane, while members of the MRP family are localized at plasma membrane in mammalian cells to reduce the cellular accumulation of various drugs. Thus, the hMRP1-expressing tobacco cells were able to take up these substrates across the tonoplast and sequestrate them in the vacuolar matrix. These results suggest that it may be possible to use the transgenic tobacco in phytoremediation, where a single transformation with an ABC transporter with broad substrate specificity should be effective for extracting various environmental pollutants including both organic and inorganic compounds, and accumulate them in the plant body. This should be advantageous for the remediation of a complex polluted environment, which is commonly found in the real world.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off