Heterogeneous reactions of HONO formation from NO2 and HNO3: a review

Heterogeneous reactions of HONO formation from NO2 and HNO3: a review The photolysis of nitrous acid (HONO) is an important reaction of atmospheric chemistry due to the fact that it can be the source of OH radical in the troposphere. Despite its role as a radical precursor, the chemical mechanisms leading to HONO formation are not well understood. It is commonly assumed that HONO formation is due to both homogeneous and heterogeneous processes involving NOx (mixture of NO and NO2) in which the kinetic and mechanistic details are still under investigation. In this discussion, we would like to highlight the formation of HONO from NO2 and nitric acid (HNO3) in the presence of organic particulate. We understood that in the real case, many parameters can influence the reaction mechanism; however, this is just an effort to have a better understanding of the study of HONO formation in the atmospheric process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Heterogeneous reactions of HONO formation from NO2 and HNO3: a review

Loading next page...
 
/lp/springer_journal/heterogeneous-reactions-of-hono-formation-from-no2-and-hno3-a-review-yRspMBrDIm
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0439-z
Publisher site
See Article on Publisher Site

Abstract

The photolysis of nitrous acid (HONO) is an important reaction of atmospheric chemistry due to the fact that it can be the source of OH radical in the troposphere. Despite its role as a radical precursor, the chemical mechanisms leading to HONO formation are not well understood. It is commonly assumed that HONO formation is due to both homogeneous and heterogeneous processes involving NOx (mixture of NO and NO2) in which the kinetic and mechanistic details are still under investigation. In this discussion, we would like to highlight the formation of HONO from NO2 and nitric acid (HNO3) in the presence of organic particulate. We understood that in the real case, many parameters can influence the reaction mechanism; however, this is just an effort to have a better understanding of the study of HONO formation in the atmospheric process.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 22, 2011

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off