Heterogeneous photocatalyzed degradation of a pesticide derivative, 3-chloro-4-methoxyaniline, in aqueous suspensions of titania

Heterogeneous photocatalyzed degradation of a pesticide derivative, 3-chloro-4-methoxyaniline, in... The photocatalyzed degradation of a pesticide derivative, 3-chloro-4-methoxyaniline (1), has been investigated in aqueous suspensions of titanium dioxide (TiO2) and air as a function of irradiation time under a variety of conditions using UV–Vis spectroscopic and HPLC analysis techniques. The degradation kinetics were studied under different conditions such as types of TiO2 powders, reaction pH, catalyst loading, substrate, and H2O2 concentrations. The photocatalyst Degussa P25 showed better photocatalytic activity for the degradation of the compound 1. Addition of hydrogen peroxide as an electron acceptor in addition to oxygen greatly enhanced the degradation rate of the compound 1. Higher degradation rates were observed at lower and higher pH values, i.e., 3.15 and 9.15, respectively. The optimal substrate concentration and catalyst loading for the degradation was found to be 0.6 mM with 1.5 g L−1. A probable pathway for the decomposition of compound 1 is proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Heterogeneous photocatalyzed degradation of a pesticide derivative, 3-chloro-4-methoxyaniline, in aqueous suspensions of titania

Loading next page...
 
/lp/springer_journal/heterogeneous-photocatalyzed-degradation-of-a-pesticide-derivative-3-fwfZZD6zal
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0452-2
Publisher site
See Article on Publisher Site

Abstract

The photocatalyzed degradation of a pesticide derivative, 3-chloro-4-methoxyaniline (1), has been investigated in aqueous suspensions of titanium dioxide (TiO2) and air as a function of irradiation time under a variety of conditions using UV–Vis spectroscopic and HPLC analysis techniques. The degradation kinetics were studied under different conditions such as types of TiO2 powders, reaction pH, catalyst loading, substrate, and H2O2 concentrations. The photocatalyst Degussa P25 showed better photocatalytic activity for the degradation of the compound 1. Addition of hydrogen peroxide as an electron acceptor in addition to oxygen greatly enhanced the degradation rate of the compound 1. Higher degradation rates were observed at lower and higher pH values, i.e., 3.15 and 9.15, respectively. The optimal substrate concentration and catalyst loading for the degradation was found to be 0.6 mM with 1.5 g L−1. A probable pathway for the decomposition of compound 1 is proposed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 24, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial