Heterogeneous organization of a tandem repeat family in subtelomeric heterochromatin of rye

Heterogeneous organization of a tandem repeat family in subtelomeric heterochromatin of rye The presence of tandem repeat multicopy families in subtelomeric regions of all chromosomes is a characteristic feature of the rye karyotype, in contrast to the organization of these regions in chromosomes of extensively studied species, such as human, rice, and Arabidopsis. To study the molecular structure of these regions, we analyzed BAC clones from a library constructed from the genetic material of rye chromosome 1 short arm (1RS). Screening of the library detected numerous clones that contained copies of multicopy tandem families of DNA sequences pSc200, pSc250, and pSc119.2. An examination of the molecular organization of tandem arrays of the pSc200 family, which is the most common in the rye genome, showed that the subtelomeric 1RS region includes several such arrays, each of which contains characteristic blocks of multimers of various periodicity. Such pattern of heterogeneous organization of tandem repeat arrays differs from the view of the tandem arrays as monotonous sequence of identical monomers, which was generally accepted in recent past. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Heterogeneous organization of a tandem repeat family in subtelomeric heterochromatin of rye

Loading next page...
 
/lp/springer_journal/heterogeneous-organization-of-a-tandem-repeat-family-in-subtelomeric-cX5AT0RciQ
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410090152
Publisher site
See Article on Publisher Site

Abstract

The presence of tandem repeat multicopy families in subtelomeric regions of all chromosomes is a characteristic feature of the rye karyotype, in contrast to the organization of these regions in chromosomes of extensively studied species, such as human, rice, and Arabidopsis. To study the molecular structure of these regions, we analyzed BAC clones from a library constructed from the genetic material of rye chromosome 1 short arm (1RS). Screening of the library detected numerous clones that contained copies of multicopy tandem families of DNA sequences pSc200, pSc250, and pSc119.2. An examination of the molecular organization of tandem arrays of the pSc200 family, which is the most common in the rye genome, showed that the subtelomeric 1RS region includes several such arrays, each of which contains characteristic blocks of multimers of various periodicity. Such pattern of heterogeneous organization of tandem repeat arrays differs from the view of the tandem arrays as monotonous sequence of identical monomers, which was generally accepted in recent past.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 30, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off