Heteroepitaxial ZnO/CuO thin film and nanorods array: photoconductivity and field emission effect

Heteroepitaxial ZnO/CuO thin film and nanorods array: photoconductivity and field emission effect ZnO thin film and nanorods array have been synthesized by RF magnetron sputtering and low temperature wet chemical method, respectively. It is followed by deposition of Cu nanosheet using DC magnetron sputtering, which was oxidized subsequently to form 2D and 3D ZnO/CuO heterointerfaces. A successful fabrication of heteroepitaxial ZnO–CuO thin film was presented to improve the interface quality, crystallinity and conformal characteristic of CuO sheet. ZnO/CuO thin film revealed higher absorption efficiency in the visible region in comparison to pure ZnO. The rectifying behavior of n-ZnO/p-CuO junction could be useful in photoactive and photoconductive devices, while the uni-polar transport of p-CuO/n-ZnO thin film is beneficial for optical switching. This photoactivity attributed to extended light absorption and effective transfer of photogenerated carriers. The as-synthesized ZnO–Cu composite was determined to be a hierarchical heterostructure consisting of ZnO nanorods and Cu nanosheets with intimate hetero-interfaces. The formation of n+-Cu/n-ZnO heterointerface cause to electrostatic field which facilitates electron emission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Heteroepitaxial ZnO/CuO thin film and nanorods array: photoconductivity and field emission effect

Loading next page...
 
/lp/springer_journal/heteroepitaxial-zno-cuo-thin-film-and-nanorods-array-photoconductivity-lGKp0zF6cB
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7135-8
Publisher site
See Article on Publisher Site

Abstract

ZnO thin film and nanorods array have been synthesized by RF magnetron sputtering and low temperature wet chemical method, respectively. It is followed by deposition of Cu nanosheet using DC magnetron sputtering, which was oxidized subsequently to form 2D and 3D ZnO/CuO heterointerfaces. A successful fabrication of heteroepitaxial ZnO–CuO thin film was presented to improve the interface quality, crystallinity and conformal characteristic of CuO sheet. ZnO/CuO thin film revealed higher absorption efficiency in the visible region in comparison to pure ZnO. The rectifying behavior of n-ZnO/p-CuO junction could be useful in photoactive and photoconductive devices, while the uni-polar transport of p-CuO/n-ZnO thin film is beneficial for optical switching. This photoactivity attributed to extended light absorption and effective transfer of photogenerated carriers. The as-synthesized ZnO–Cu composite was determined to be a hierarchical heterostructure consisting of ZnO nanorods and Cu nanosheets with intimate hetero-interfaces. The formation of n+-Cu/n-ZnO heterointerface cause to electrostatic field which facilitates electron emission.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off