Hemodynamic Benefits of Counterpulsation, Implantable, Percutaneous, and Intraaortic Rotary Blood Pumps: An In-Silico and In Vitro Study

Hemodynamic Benefits of Counterpulsation, Implantable, Percutaneous, and Intraaortic Rotary Blood... Mechanical circulatory support (MCS) devices have become a standard therapy for heart failure (HF) patients. MCS device designs may differ by level of support, inflow and/or outflow cannulation sites, and mechanism(s) of cardiac unloading and blood flow delivery. Investigation and direct comparison of hemodynamic parameters that help characterize performance of MCS devices has been limited. We quantified cardiac and vascular hemodynamic responses for different types of MCS devices. Continuous flow (CF) left ventricular (LV) assist devices (LVAD) with LV or left atrial (LA) inlet, counterpulsation devices, percutaneous CF LVAD, and intra-aortic rotary blood pumps (IARBP) were quantified using established computer simulation and mock flow loop models. Hemodynamic data were analyzed on a beat-to-beat basis at baseline HF and over a range of MCS support. Results demonstrated that all LVAD greatly diminished vascular pulsatility (P) and LV external work (LVEW). LVAD with LA inflow provided a greater reduction in LVEW compared to LVAD with LV inflow, but at the potential risk for blood stasis/thrombosis in the LV at high support. Counterpulsation provided greater coronary flow (CoF) augmentation, but had a lower reduction in LVEW compared to partial percutaneous LVAD support. IARBP diminished LVEW, but at the expense of diminished CoF due to coronary steal. The hemodynamic benefits for each type of mechanical circulatory support system are unique and clinical decisions on device selection to maximize end organ perfusion and minimize invasiveness needs to be considered for an individual patients’ presentation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Engineering and Technology Springer Journals

Hemodynamic Benefits of Counterpulsation, Implantable, Percutaneous, and Intraaortic Rotary Blood Pumps: An In-Silico and In Vitro Study

Loading next page...
 
/lp/springer_journal/hemodynamic-benefits-of-counterpulsation-implantable-percutaneous-and-UbjbtBIIca
Publisher
Springer Journals
Copyright
Copyright © 2017 by Biomedical Engineering Society
Subject
Engineering; Biomedical Engineering; Cardiology; Biomedicine, general
ISSN
1869-408X
eISSN
1869-4098
D.O.I.
10.1007/s13239-017-0314-1
Publisher site
See Article on Publisher Site

Abstract

Mechanical circulatory support (MCS) devices have become a standard therapy for heart failure (HF) patients. MCS device designs may differ by level of support, inflow and/or outflow cannulation sites, and mechanism(s) of cardiac unloading and blood flow delivery. Investigation and direct comparison of hemodynamic parameters that help characterize performance of MCS devices has been limited. We quantified cardiac and vascular hemodynamic responses for different types of MCS devices. Continuous flow (CF) left ventricular (LV) assist devices (LVAD) with LV or left atrial (LA) inlet, counterpulsation devices, percutaneous CF LVAD, and intra-aortic rotary blood pumps (IARBP) were quantified using established computer simulation and mock flow loop models. Hemodynamic data were analyzed on a beat-to-beat basis at baseline HF and over a range of MCS support. Results demonstrated that all LVAD greatly diminished vascular pulsatility (P) and LV external work (LVEW). LVAD with LA inflow provided a greater reduction in LVEW compared to LVAD with LV inflow, but at the potential risk for blood stasis/thrombosis in the LV at high support. Counterpulsation provided greater coronary flow (CoF) augmentation, but had a lower reduction in LVEW compared to partial percutaneous LVAD support. IARBP diminished LVEW, but at the expense of diminished CoF due to coronary steal. The hemodynamic benefits for each type of mechanical circulatory support system are unique and clinical decisions on device selection to maximize end organ perfusion and minimize invasiveness needs to be considered for an individual patients’ presentation.

Journal

Cardiovascular Engineering and TechnologySpringer Journals

Published: Jul 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off