Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)—how about increase of salinity?

Hematological and histopathological effects of silver nanoparticles in rainbow trout... Hematological and histopathological toxicities of silver nanoparticles (Ag-NPs) to rainbow trout were assessed in three water salinities: 0.4 ppt (low salinity), 6 ± 0.3 ppt (moderate salinity), and 12 ± 0.2 ppt (high salinity). The concentrations of Ag-NPs in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, and in the moderate and high salinities were 3.2, 10, 32, and 100 ppm. The results indicated a concentration-dependently increased (thrombocyte, monocyte, and large lymphocyte) and decreased (neutrophil and small lymphocyte) white blood cell count in the Ag-NP treatments in the low salinity than the other ones in the moderate and high salinities. Red blood cell volume significantly increased in all of the experimental groups exposed to higher Ag-NP concentrations, especially those in the low salinity. In the moderate and high salinities, blood plasma total protein decreased in 10 and 32 ppm Ag-NP treatments, but albumin increased in the groups in the low salinity. Blood plasma ions (Cl−, Na+, K+, Ca2+, and Mg2+) showed high changes in the higher Ag-NP treatments. In all treatments, gill histological analysis demonstrated a time- and Ag-NP concentration-dependent extent of abnormalities, with the highest epithelial lifting in 1 ppm Ag-NPs in the low salinity and also the highest necrosis and aneurism in the 32 ppm treatments in other salinities. Lower Ag-NP concentrations in the low salinity led to fibrosis, villus fusion, inflammation, vacuolization, and microvillus hyperplasia in the gut, yet villi lifting and necrosis in 0.32 and 1 ppm of Ag-NPs were the main anomalies. In addition to the mentioned alterations, villi abolitions predominantly occurred in 32 ppm Ag-NP concentrations in the moderate and high salinities. Overall, despite exposing to lower Ag-NP concentrations, the fish kept in the low salinity demonstrated more vulnerability to Ag-NPs than those in the other salinities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)—how about increase of salinity?

Loading next page...
 
/lp/springer_journal/hematological-and-histopathological-effects-of-silver-nanoparticles-in-1Z33TF5lWY
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1663-5
Publisher site
See Article on Publisher Site

Abstract

Hematological and histopathological toxicities of silver nanoparticles (Ag-NPs) to rainbow trout were assessed in three water salinities: 0.4 ppt (low salinity), 6 ± 0.3 ppt (moderate salinity), and 12 ± 0.2 ppt (high salinity). The concentrations of Ag-NPs in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, and in the moderate and high salinities were 3.2, 10, 32, and 100 ppm. The results indicated a concentration-dependently increased (thrombocyte, monocyte, and large lymphocyte) and decreased (neutrophil and small lymphocyte) white blood cell count in the Ag-NP treatments in the low salinity than the other ones in the moderate and high salinities. Red blood cell volume significantly increased in all of the experimental groups exposed to higher Ag-NP concentrations, especially those in the low salinity. In the moderate and high salinities, blood plasma total protein decreased in 10 and 32 ppm Ag-NP treatments, but albumin increased in the groups in the low salinity. Blood plasma ions (Cl−, Na+, K+, Ca2+, and Mg2+) showed high changes in the higher Ag-NP treatments. In all treatments, gill histological analysis demonstrated a time- and Ag-NP concentration-dependent extent of abnormalities, with the highest epithelial lifting in 1 ppm Ag-NPs in the low salinity and also the highest necrosis and aneurism in the 32 ppm treatments in other salinities. Lower Ag-NP concentrations in the low salinity led to fibrosis, villus fusion, inflammation, vacuolization, and microvillus hyperplasia in the gut, yet villi lifting and necrosis in 0.32 and 1 ppm of Ag-NPs were the main anomalies. In addition to the mentioned alterations, villi abolitions predominantly occurred in 32 ppm Ag-NP concentrations in the moderate and high salinities. Overall, despite exposing to lower Ag-NP concentrations, the fish kept in the low salinity demonstrated more vulnerability to Ag-NPs than those in the other salinities.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off