Help desk center operating model as a two-phase queueing system

Help desk center operating model as a two-phase queueing system We consider a two-phase queueing system with a Markovian arrival flow as an operating model for a help desk center. The first phase is a multiserver system with a finite buffer and impatient customers. After getting service in the first phase, a customer either enters the second phase with an infinite buffer or quits the system. Service times at the first and second stages have phase-type distributions with different parameters. We obtain an existence condition for a stationary regime of the system. An algorithm for computing stationary probabilities and basic performance characteristics of the system is presented. Laplace-Stieltjes transforms for the distributions of sojourn and waiting times in the first and second phases are found. Results of numerical experiments are presented. Optimization problem for the system operation is solved numerically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Help desk center operating model as a two-phase queueing system

Loading next page...
 
/lp/springer_journal/help-desk-center-operating-model-as-a-two-phase-queueing-system-qZBCBkp206
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946013010067
Publisher site
See Article on Publisher Site

Abstract

We consider a two-phase queueing system with a Markovian arrival flow as an operating model for a help desk center. The first phase is a multiserver system with a finite buffer and impatient customers. After getting service in the first phase, a customer either enters the second phase with an infinite buffer or quits the system. Service times at the first and second stages have phase-type distributions with different parameters. We obtain an existence condition for a stationary regime of the system. An algorithm for computing stationary probabilities and basic performance characteristics of the system is presented. Laplace-Stieltjes transforms for the distributions of sojourn and waiting times in the first and second phases are found. Results of numerical experiments are presented. Optimization problem for the system operation is solved numerically.

Journal

Problems of Information TransmissionSpringer Journals

Published: Apr 13, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off