Heliomycin and tetracinomycin D: anthraquinone derivatives with histone deacetylase inhibitory activity from marine sponge-associated Streptomyces sp. SP9

Heliomycin and tetracinomycin D: anthraquinone derivatives with histone deacetylase inhibitory... Several actinomycetes strains were isolated from different marine sponges collected from the Red Sea shore in Egypt. The efficiency of their crude extracts to inhibit histone deacetylase (HDAC) enzyme was investigated in the nuclear extract of Hela cell line. The crude extract corresponding to Streptomyces sp. SP9 isolated from the marine sponge Pseudoceratina arabica showed a promising HDAC inhibitory activity with 64 and 81% at 50 and 100 µg/ml, respectively. The strain was identified as Streptomyces sp. by phylogenetic analyses based on its 16S rRNA gene sequence. The major compounds of Streptomyces sp. SP9 were isolated and purified by different chromatographic methods. The chemical structure of the isolated compounds was identified on the basis of their spectroscopic data including mass, 1H and 13C NMR, and by comparison with those of authenticated samples. Structures of compounds 1 and 2 were established as heliomycin and tetracenomycin D, respectively. These compounds exhibited HDAC inhibitory activities with IC50 values of 29.8 ± 0.04 µg/ml for heliomycin (1) and 10.9 ± 0.02 µg/ml for tetracenomycin D (2). A computational docking study for compounds 1 and 2 against HDAC1, HDAC2, and HDAC3 was performed to formulate a hypothetical mechanism by which the tested compounds inhibit HDAC. Tetracenomycin D (2) showed a good binding interactions with HDAC2 (− 5.230 kcal/mol) and HDAC3 (− 6.361 kcal/mol). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png 3 Biotech Springer Journals

Heliomycin and tetracinomycin D: anthraquinone derivatives with histone deacetylase inhibitory activity from marine sponge-associated Streptomyces sp. SP9

Loading next page...
 
/lp/springer_journal/heliomycin-and-tetracinomycin-d-anthraquinone-derivatives-with-histone-8ofKtckWQE
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Agriculture; Cancer Research; Bioinformatics; Stem Cells; Biomaterials
ISSN
2190-572X
eISSN
2190-5738
D.O.I.
10.1007/s13205-018-1304-1
Publisher site
See Article on Publisher Site

Abstract

Several actinomycetes strains were isolated from different marine sponges collected from the Red Sea shore in Egypt. The efficiency of their crude extracts to inhibit histone deacetylase (HDAC) enzyme was investigated in the nuclear extract of Hela cell line. The crude extract corresponding to Streptomyces sp. SP9 isolated from the marine sponge Pseudoceratina arabica showed a promising HDAC inhibitory activity with 64 and 81% at 50 and 100 µg/ml, respectively. The strain was identified as Streptomyces sp. by phylogenetic analyses based on its 16S rRNA gene sequence. The major compounds of Streptomyces sp. SP9 were isolated and purified by different chromatographic methods. The chemical structure of the isolated compounds was identified on the basis of their spectroscopic data including mass, 1H and 13C NMR, and by comparison with those of authenticated samples. Structures of compounds 1 and 2 were established as heliomycin and tetracenomycin D, respectively. These compounds exhibited HDAC inhibitory activities with IC50 values of 29.8 ± 0.04 µg/ml for heliomycin (1) and 10.9 ± 0.02 µg/ml for tetracenomycin D (2). A computational docking study for compounds 1 and 2 against HDAC1, HDAC2, and HDAC3 was performed to formulate a hypothetical mechanism by which the tested compounds inhibit HDAC. Tetracenomycin D (2) showed a good binding interactions with HDAC2 (− 5.230 kcal/mol) and HDAC3 (− 6.361 kcal/mol).

Journal

3 BiotechSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off