Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates

Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted... The impact of a droplet onto a dry or wet surface leads to a rapid formation of a shear flow at the boundary. We present a novel method to experimentally resolve this flow in time at different heights above the solid. The radial flow field close to the substrate is reconstructed by evaluation of streak images of fluorescent tracer particles in the liquid. By using a microscope objective with a narrow depth of field, it is possible to scan through the flow in thin horizontal layers of 5 μm thickness. We focus on the flow close (≤40 μm) to the boundary during the impact of elongated drops with diameters of 0.3–0.4 mm and speeds in the range of 2–3 m s−1. The spatial resolution is obtained from several individual events of the repeatable impact process and varying the focal plane. Fluorescent streaks formed by the suspended particles are recorded with high-speed photography at up to 20,000 frames per second. The impact of water and of ethanol is investigated both on dry glass and on glass covered with a thin film of the same liquid. Results are given as spatio-temporal maps of radial flow velocity at different heights, and the maximum shear stress at the substrate is evaluated. The implications of the results are discussed with respect to cleaning applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates

Loading next page...
 
/lp/springer_journal/height-resolved-velocity-measurement-of-the-boundary-flow-during-bEiBReu13g
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1944-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial