Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates

Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted... The impact of a droplet onto a dry or wet surface leads to a rapid formation of a shear flow at the boundary. We present a novel method to experimentally resolve this flow in time at different heights above the solid. The radial flow field close to the substrate is reconstructed by evaluation of streak images of fluorescent tracer particles in the liquid. By using a microscope objective with a narrow depth of field, it is possible to scan through the flow in thin horizontal layers of 5 μm thickness. We focus on the flow close (≤40 μm) to the boundary during the impact of elongated drops with diameters of 0.3–0.4 mm and speeds in the range of 2–3 m s−1. The spatial resolution is obtained from several individual events of the repeatable impact process and varying the focal plane. Fluorescent streaks formed by the suspended particles are recorded with high-speed photography at up to 20,000 frames per second. The impact of water and of ethanol is investigated both on dry glass and on glass covered with a thin film of the same liquid. Results are given as spatio-temporal maps of radial flow velocity at different heights, and the maximum shear stress at the substrate is evaluated. The implications of the results are discussed with respect to cleaning applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates

Loading next page...
 
/lp/springer_journal/height-resolved-velocity-measurement-of-the-boundary-flow-during-bEiBReu13g
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1944-4
Publisher site
See Article on Publisher Site

Abstract

The impact of a droplet onto a dry or wet surface leads to a rapid formation of a shear flow at the boundary. We present a novel method to experimentally resolve this flow in time at different heights above the solid. The radial flow field close to the substrate is reconstructed by evaluation of streak images of fluorescent tracer particles in the liquid. By using a microscope objective with a narrow depth of field, it is possible to scan through the flow in thin horizontal layers of 5 μm thickness. We focus on the flow close (≤40 μm) to the boundary during the impact of elongated drops with diameters of 0.3–0.4 mm and speeds in the range of 2–3 m s−1. The spatial resolution is obtained from several individual events of the repeatable impact process and varying the focal plane. Fluorescent streaks formed by the suspended particles are recorded with high-speed photography at up to 20,000 frames per second. The impact of water and of ethanol is investigated both on dry glass and on glass covered with a thin film of the same liquid. Results are given as spatio-temporal maps of radial flow velocity at different heights, and the maximum shear stress at the substrate is evaluated. The implications of the results are discussed with respect to cleaning applications.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 27, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off