Heavy metal tolerance in marine strains of Yarrowia lipolytica

Heavy metal tolerance in marine strains of Yarrowia lipolytica Heavy metal tolerance of two marine strains of Yarrowia lipolytica was tested on solid yeast extract peptone dextrose agar plates. Based on minimum inhibitory concentration esteems, it is inferred that the two strains of Y. lipolytica were tolerant to heavy metals such as Pb(II), Cr(III), Zn(II), Cu(II), As(V), and Ni(II) ions. The impact of various heavy metal concentrations on the growth kinetics of Y. lipolytica was likewise assessed. With increased heavy metal concentration, the specific growth rate was reduced with delayed doubling time. Furthermore, biofilm development of both yeasts on the glass surfaces and in microtitre plates was assessed in presence of different heavy metals. In microtitre plates, a short lag phase of biofilm formation was noticed without the addition of heavy metals in yeast nitrogen base liquid media. A lag phase was extended over increasing metal concentrations of media. Heavy metals like Cr(VI), Cd(II), and As(V) are contrastingly influenced on biofilms’ formation of microtitre plates. Other heavy metals did not much influence on biofilms development. Thus, biofilm formation is a strategy of Y. lipolytica under stress of heavy metals has significance in bioremediation process for recovery of heavy metals from contaminated environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Extremophiles Springer Journals

Heavy metal tolerance in marine strains of Yarrowia lipolytica

Loading next page...
 
/lp/springer_journal/heavy-metal-tolerance-in-marine-strains-of-yarrowia-lipolytica-0ezCLGG50f
Publisher
Springer Japan
Copyright
Copyright © 2018 by Springer Japan KK, part of Springer Nature
Subject
Life Sciences; Microbiology; Biotechnology; Biochemistry, general; Microbial Ecology
ISSN
1431-0651
eISSN
1433-4909
D.O.I.
10.1007/s00792-018-1022-y
Publisher site
See Article on Publisher Site

Abstract

Heavy metal tolerance of two marine strains of Yarrowia lipolytica was tested on solid yeast extract peptone dextrose agar plates. Based on minimum inhibitory concentration esteems, it is inferred that the two strains of Y. lipolytica were tolerant to heavy metals such as Pb(II), Cr(III), Zn(II), Cu(II), As(V), and Ni(II) ions. The impact of various heavy metal concentrations on the growth kinetics of Y. lipolytica was likewise assessed. With increased heavy metal concentration, the specific growth rate was reduced with delayed doubling time. Furthermore, biofilm development of both yeasts on the glass surfaces and in microtitre plates was assessed in presence of different heavy metals. In microtitre plates, a short lag phase of biofilm formation was noticed without the addition of heavy metals in yeast nitrogen base liquid media. A lag phase was extended over increasing metal concentrations of media. Heavy metals like Cr(VI), Cd(II), and As(V) are contrastingly influenced on biofilms’ formation of microtitre plates. Other heavy metals did not much influence on biofilms development. Thus, biofilm formation is a strategy of Y. lipolytica under stress of heavy metals has significance in bioremediation process for recovery of heavy metals from contaminated environment.

Journal

ExtremophilesSpringer Journals

Published: Mar 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off