Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection

Heat transfer enhancement for laminar natural convection along a vertical plate due to... Sub-millimeter-bubble injection is one of the most promising techniques for enhancing heat transfer for the laminar natural convection of liquids. However, flow and heat transfer characteristics for laminar natural convection of water with sub-millimeter bubbles have not yet been fully understood. The purpose of this study is to experimentally clarify the effects of sub-millimeter-bubble injection on the laminar natural convection of water along a heated vertical plate. The use of thermocouples and a particle tracking velocimetry (PTV) technique are applied to temperature and velocity measurements, respectively. The temperature measurement shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection increases with an increase in the bubble flow rate or a decrease in the wall heat flux and that the ratio ranges from 1.35 to 1.85. Moreover, it is concluded from simultaneous measurement of temperature and velocity that the heat transfer enhancement is directly affected by flow modification due to bubbles rising near the heated vertical plate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection

Loading next page...
 
/lp/springer_journal/heat-transfer-enhancement-for-laminar-natural-convection-along-a-aV2rouaHDq
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0490-8
Publisher site
See Article on Publisher Site

Abstract

Sub-millimeter-bubble injection is one of the most promising techniques for enhancing heat transfer for the laminar natural convection of liquids. However, flow and heat transfer characteristics for laminar natural convection of water with sub-millimeter bubbles have not yet been fully understood. The purpose of this study is to experimentally clarify the effects of sub-millimeter-bubble injection on the laminar natural convection of water along a heated vertical plate. The use of thermocouples and a particle tracking velocimetry (PTV) technique are applied to temperature and velocity measurements, respectively. The temperature measurement shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection increases with an increase in the bubble flow rate or a decrease in the wall heat flux and that the ratio ranges from 1.35 to 1.85. Moreover, it is concluded from simultaneous measurement of temperature and velocity that the heat transfer enhancement is directly affected by flow modification due to bubbles rising near the heated vertical plate.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 21, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off