Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis

Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H2O2, is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H2O2 in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37°C) or by treatment with H2O2, butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H2O2 is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H2O2-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H2O2 is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H2O2 was unable to induce this complex suggesting that H2O2 is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37°C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis

Loading next page...
 
/lp/springer_journal/heat-stress-induced-h2o2-is-required-for-effective-expression-of-heat-mXj6xJX0Zt
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0045-4
Publisher site
See Article on Publisher Site

Abstract

The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H2O2, is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H2O2 in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37°C) or by treatment with H2O2, butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H2O2 is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H2O2-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H2O2 is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H2O2 was unable to induce this complex suggesting that H2O2 is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37°C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 16, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off