Heat shock increases thermotolerance of photosynthetic electron transport and the content of chloroplast membranes and lipids in wheat leaves

Heat shock increases thermotolerance of photosynthetic electron transport and the content of... Preliminary heating of 15-16-day-old wheat (Triticum aestivum L.) plants for 3 h at 37–38°C (heat shock, HS) increased the tolerance of photosynthetic electron transport (determined as the reduction of 2,6-dichlorophenol indophenol by isolated chloroplasts) toward heating of leaves at 42–48°C in high light (100 klx). At the same time, HS did not affect the activity of the xanthophyll cycle reactions in the 30–48°C temperature range. HS exposure induced an increase in the thylakoid length, the number of grana, and the average number of thylakoids per granum. The volume of the thylakoid system increased 1.4-fold. Such indices as the total content of chlorophylls (a + b), the chlorophyll a/b ratio, as well as the contents of individual carotenoids, chloroplast membrane proteins, and the soluble leaf proteins remained unchanged. The de novo photosynthetic membrane formation was accompanied by the 1.5-fold increase in major chloroplast lipids. It was concluded that, in mature wheat chloroplasts, HS induced the formation of thylakoids characterized by a changed molecular structure and by increased lipid/protein and lipid/chlorophyll ratios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Heat shock increases thermotolerance of photosynthetic electron transport and the content of chloroplast membranes and lipids in wheat leaves

Loading next page...
 
/lp/springer_journal/heat-shock-increases-thermotolerance-of-photosynthetic-electron-rPIbOyKYUD
Publisher
Springer Journals
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707040048
Publisher site
See Article on Publisher Site

Abstract

Preliminary heating of 15-16-day-old wheat (Triticum aestivum L.) plants for 3 h at 37–38°C (heat shock, HS) increased the tolerance of photosynthetic electron transport (determined as the reduction of 2,6-dichlorophenol indophenol by isolated chloroplasts) toward heating of leaves at 42–48°C in high light (100 klx). At the same time, HS did not affect the activity of the xanthophyll cycle reactions in the 30–48°C temperature range. HS exposure induced an increase in the thylakoid length, the number of grana, and the average number of thylakoids per granum. The volume of the thylakoid system increased 1.4-fold. Such indices as the total content of chlorophylls (a + b), the chlorophyll a/b ratio, as well as the contents of individual carotenoids, chloroplast membrane proteins, and the soluble leaf proteins remained unchanged. The de novo photosynthetic membrane formation was accompanied by the 1.5-fold increase in major chloroplast lipids. It was concluded that, in mature wheat chloroplasts, HS induced the formation of thylakoids characterized by a changed molecular structure and by increased lipid/protein and lipid/chlorophyll ratios.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jul 24, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off