Heat Shock during the Development of Central Structures of the Drosophila Brain: Memory Formation in the l(1)ts403 Mutant of Drosophila melanogaster

Heat Shock during the Development of Central Structures of the Drosophila Brain: Memory Formation... The structures and functions of many genes are homologous in Drosophilaand humans. Therefore, studying pathological processes in Drosophila, in particular neurogenerative processes accompanied by progressive memory loss, helps to understand the ethiology of corresponding human disorders and to develop therapeutic strategies. It is believed that the development of neurogenerative diseases might result from alterations in the functioning of the heat shock/chaperone machinery. In view of this, we used Drosophila mutant l(1)ts403 with defective synthesis of heat shock proteins for studying learning and memory in a test of conditioned courtship suppression following a heat shock given at different developmental stages. High learning indices were registered immediately and 30 min after training both in the intact controls and in flies subjected to different developmental heat shocks. This indicated normal learning and memory acquisition in the mutant. At the same time, memory retention (3 h after training) suffered to different extent depending on the developmental stage. The remote effects of heat shock given during the formation of the mushroom bodies indicated the important role of this brain structure in the memory formation. The observed memory defects may result from alterations both in mRNA transport and in the functions of molecular chaperones in the l(1)ts403 mutant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Heat Shock during the Development of Central Structures of the Drosophila Brain: Memory Formation in the l(1)ts403 Mutant of Drosophila melanogaster

Loading next page...
 
/lp/springer_journal/heat-shock-during-the-development-of-central-structures-of-the-eI6RBdx2qD
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1022062609102
Publisher site
See Article on Publisher Site

Abstract

The structures and functions of many genes are homologous in Drosophilaand humans. Therefore, studying pathological processes in Drosophila, in particular neurogenerative processes accompanied by progressive memory loss, helps to understand the ethiology of corresponding human disorders and to develop therapeutic strategies. It is believed that the development of neurogenerative diseases might result from alterations in the functioning of the heat shock/chaperone machinery. In view of this, we used Drosophila mutant l(1)ts403 with defective synthesis of heat shock proteins for studying learning and memory in a test of conditioned courtship suppression following a heat shock given at different developmental stages. High learning indices were registered immediately and 30 min after training both in the intact controls and in flies subjected to different developmental heat shocks. This indicated normal learning and memory acquisition in the mutant. At the same time, memory retention (3 h after training) suffered to different extent depending on the developmental stage. The remote effects of heat shock given during the formation of the mushroom bodies indicated the important role of this brain structure in the memory formation. The observed memory defects may result from alterations both in mRNA transport and in the functions of molecular chaperones in the l(1)ts403 mutant.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off