Heat-Induced Increase in the Stability of Nitrate Reductase from Wheat Leaves against Inactivating Factors

Heat-Induced Increase in the Stability of Nitrate Reductase from Wheat Leaves against... Heating of wheat seedlings (Triticum aestivum L.) for 3 h at 41–42°C (heat hardening) increased the thermal stability of nitrate reductase (NR). After transferring hardened plants to normal temperature, the higher level of thermal stability persisted for 6 days. The heat hardening increased the enzyme stability against the proteolytic effect of trypsin and reduced the rate of NR degradation in extracts. Inhibition of the NR synthesis by transferring plants to a nitrate-free medium resulted in a much lower rate of enzyme degradation in the cells of hardened, as compared to unhardened plants. A short-term heating of seedlings (10 min at 36, 40, and 44°C) increased the ability of NR to reactivate after heat damage. The thermal stability of NR increased only in seedlings that had been hardened at 40 and 44°C, whereas hardening at 36°C did not result in enzyme stabilization. It is concluded that heat hardening (hyperthermia) increases NR stability against a number of inactivating factors (heating, proteolysis,in vitroand in vivo enzyme degradation) and enhances its ability to repair damage induced by heating. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Heat-Induced Increase in the Stability of Nitrate Reductase from Wheat Leaves against Inactivating Factors

Loading next page...
 
/lp/springer_journal/heat-induced-increase-in-the-stability-of-nitrate-reductase-from-wheat-MoC12ZwglN
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009006816481
Publisher site
See Article on Publisher Site

Abstract

Heating of wheat seedlings (Triticum aestivum L.) for 3 h at 41–42°C (heat hardening) increased the thermal stability of nitrate reductase (NR). After transferring hardened plants to normal temperature, the higher level of thermal stability persisted for 6 days. The heat hardening increased the enzyme stability against the proteolytic effect of trypsin and reduced the rate of NR degradation in extracts. Inhibition of the NR synthesis by transferring plants to a nitrate-free medium resulted in a much lower rate of enzyme degradation in the cells of hardened, as compared to unhardened plants. A short-term heating of seedlings (10 min at 36, 40, and 44°C) increased the ability of NR to reactivate after heat damage. The thermal stability of NR increased only in seedlings that had been hardened at 40 and 44°C, whereas hardening at 36°C did not result in enzyme stabilization. It is concluded that heat hardening (hyperthermia) increases NR stability against a number of inactivating factors (heating, proteolysis,in vitroand in vivo enzyme degradation) and enhances its ability to repair damage induced by heating.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off