Heat flux measurements in stagnation point methane/air flames with thermographic phosphors

Heat flux measurements in stagnation point methane/air flames with thermographic phosphors Light-induced phosphorescence from thermographic phosphors was used to study the wall temperatures and heat fluxes from nearly one-dimensional flat premixed flames. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with equivalence ratios of φ = 1, φ = 0.75 and φ = 1.25 at ambient pressure. The flames were burning in a stagnation point arrangement against a water-cooled plate. The central part of this plate was an alumina ceramic plate coated from both sides with chromium-doped alumina (ruby) and excited with a Nd:YAG laser or a green light-emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 to 1.2 m/s. The burner to plate distance (H) ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm). The measured heat flux rates indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one-dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, gas phase temperatures were measured by OH-LIF for a stoichiometric stagnation point flame. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high mass fluxes. This geometry may be well suited for further studies of the elementary flame wall interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Heat flux measurements in stagnation point methane/air flames with thermographic phosphors

Loading next page...
Copyright © 2010 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial