HCN-Encoded Pacemaker Channels: From Physiology and Biophysics to Bioengineering

HCN-Encoded Pacemaker Channels: From Physiology and Biophysics to Bioengineering The depolarizing membrane ionic current I h (also known as I f, “f” for funny), encoded by the hyperpolarization-activated cyclic-nucleotide-modulated (HCN1-4) channel gene family, was first discovered in the heart over 25 years ago. Later, I h was also found in neurons, retina, and taste buds. HCN channels structurally resemble voltage-gated K+ (Kv) channels but the molecular features underlying their opposite gating behaviors (activation by hyperpolarization rather than depolarization) and non-selective permeation profiles (≥25 times less selective for K+ than Kv channels) remain largely unknown. Although I h has been functionally linked to biological processes from the autonomous beating of the heart to pain transmission, the underlying mechanistic actions remain largely inferential and, indeed, somewhat controversial due to the slow kinetics and negative operating voltage range relative to those of the bioelectrical events involved (e.g., cardiac pacing). This article reviews the current state of our knowledge in the structure-function properties of HCN channels in the context of their physiological functions and potential HCN-based therapies via bioengineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

HCN-Encoded Pacemaker Channels: From Physiology and Biophysics to Bioengineering

Loading next page...
 
/lp/springer_journal/hcn-encoded-pacemaker-channels-from-physiology-and-biophysics-to-hZjb6wHSfo
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0881-9
Publisher site
See Article on Publisher Site

Abstract

The depolarizing membrane ionic current I h (also known as I f, “f” for funny), encoded by the hyperpolarization-activated cyclic-nucleotide-modulated (HCN1-4) channel gene family, was first discovered in the heart over 25 years ago. Later, I h was also found in neurons, retina, and taste buds. HCN channels structurally resemble voltage-gated K+ (Kv) channels but the molecular features underlying their opposite gating behaviors (activation by hyperpolarization rather than depolarization) and non-selective permeation profiles (≥25 times less selective for K+ than Kv channels) remain largely unknown. Although I h has been functionally linked to biological processes from the autonomous beating of the heart to pain transmission, the underlying mechanistic actions remain largely inferential and, indeed, somewhat controversial due to the slow kinetics and negative operating voltage range relative to those of the bioelectrical events involved (e.g., cardiac pacing). This article reviews the current state of our knowledge in the structure-function properties of HCN channels in the context of their physiological functions and potential HCN-based therapies via bioengineering.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 8, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off